Abstract:
According to one embodiment, a semiconductor storage device includes a nonvolatile memory, memory controller storing control information, a switch between the nonvolatile memory/memory controller and a power supply terminal, a second memory, an interpreter interprets a command, a switch controller, and a third memory stores an address of the control information in the second memory. The memory controller instructs the switch controller to open the switch after writing the control information into the second memory and reads the control information from the second memory based on the address stored in the third memory when the memory controller is electrically connected to the first power supply terminal.
Abstract:
According to an embodiment, an encoding apparatus includes a parameter holding unit configured to hold a parameter; an error-detecting code holding unit configured to hold an error-detecting code that is generated from the parameter; an error detecting unit configured to detect an error in the parameter, which is held in the parameter holding unit, with the use of the error-detecting code held in the error-detecting code holding unit; an error correcting unit configured to correct the error detected by the error detecting unit; a selecting unit configured to select the parameter that has been subjected to error correction by the error correcting unit; and an encoding unit configured to encode data with the use of the parameter selected by the selecting unit.
Abstract:
A WC resource usage is compared with an auto flush (AU) threshold Caf that is smaller than an upper limit Clmt, and when the WC resource usage exceeds the AF threshold Caf, the organizing state of a NAND memory 10 is checked. When the organizing of the NAND memory 10 has proceeded sufficiently, data is flushed from a write cache (WC) 21 to the NAND memory 10 early, so that the response to the subsequent write command is improved.
Abstract:
A method of controlling a nonvolatile semiconductor memory including a plurality of blocks, each one of the plurality of blocks being a unit of data erasing, includes determining a monitored block as a candidate for refresh operation from among the plurality of blocks based on a predetermined condition. The method includes monitoring an error count of data stored in the monitored block and not monitoring an error count of data stored in blocks excluding the monitored block among the plurality of blocks. The method also includes performing the refresh operation on data stored in the monitored block in which the error count is larger than a first threshold value.
Abstract:
According to one embodiment, a semiconductor storage device includes a nonvolatile semiconductor memory, a temporary storage buffer that temporarily stores writing data to be written to the nonvolatile semiconductor memory, and a coding processing unit that divides coding target data of an error correction code into two or more divided data and writes an error correction code obtained by performing an error correction coding process based on the divided data stored in the temporary storage buffer to the temporary storage buffer as an intermediate code.
Abstract:
A semiconductor storage device includes a first memory area configured in a volatile semiconductor memory, second and third memory areas configured in a nonvolatile semiconductor memory, and a controller which executes following processing. The controller executes a first processing for storing a plurality of data by the first unit in the first memory area, a second processing for storing data outputted from the first memory area by a first management unit in the second memory area, and a third processing for storing data outputted from the first memory area by a second management unit in the third memory area.
Abstract:
A semiconductor storage device includes a first memory area configured in a volatile semiconductor memory, second, third and fourth memory areas configured in a nonvolatile semiconductor memory, and a controller which executes following processing. The controller executes a first processing for storing a plurality of data by the first unit in the first memory area, a second processing for storing data by a first management unit in the fourth memory area, a third processing for storing data by a second management unit in the third memory area, a fourth processing for moving an area of the third unit from the fourth memory area to the second memory area, a fifth processing for copying data to an area of the third unit and allocating the area to the second memory area, and a sixth processing for copying data to an empty area of the third unit in the second memory area.
Abstract:
A memory system according to an embodiment of the present invention comprises: a memory amount required for management table creation is reduced by adopting a nonvolatile semiconductor memory including a plurality of parallel operation elements respectively having a plurality of physical blocks as units of data erasing and a controller that can drive the parallel operation elements in parallel and has a number-of-times-of-erasing managing unit that manages the number of times of erasing in logical block units associated with a plurality of physical blocks driven in parallel.
Abstract:
A forward lookup address translation table and a reverse lookup address translation table stored in a nonvolatile second storing unit are transferred as a master table to a volatile first storing unit at a time of start-up. When an event occurs so that the master table needs to be updated, difference information before and after update of any one of the forward lookup address translation table and the reverse lookup address translation table is recorded in the first storing unit as a log, thereby reducing an amount of the log.
Abstract:
A semiconductor storage device includes a first storage unit having a plurality of first blocks as data write regions; an instructing unit that issues a write instruction of writing data into the first blocks; a converting unit that converts an external address of input data to a memory position in the first block with reference to a conversion table in which external addresses of the data are associated with the memory positions of the data in the first blocks; and a judging unit that judges whether any of the first blocks store valid data associated with the external address based on the memory positions of the input data, wherein the instructing unit issues the write instruction of writing the data into the first block in which the valid data is not stored, when any of the first blocks does not store the valid data.