Abstract:
The present disclosure relates to a protective apparatus that can be positioned along an underside of a motor vehicle and, in many cases, near a front or rear region of the motor vehicle. The protective apparatus may include an underbody made from fiber-reinforced plastic for protecting assemblies or components arranged above it against damage as a consequence of stone chipping or ground contact. Further, the underbody may have three-dimensionally structured regions for increasing its rigidity, and the underbody may be designed to absorb chassis and/or crash loads and may include integrated holders for movably attaching chassis links.”
Abstract:
A transition body may be disposed between upper and lower tower sections of a tower for a wind power station. Some example transition bodies may include a substantially annular upper connection flange for connection to the upper tower section, and at least three substantially annular lower connection flanges, each of which may connect to a corner leg of the lower tower section. The transition body may have several segments disposed about a central tower axis, with the number of segments corresponding to the number of corner legs. Upper peripheral sections of the segments may form an annular circumferential connection envelope that supports the upper connection flange. Lower sections of the segments may form annular circumferential segment envelopes that support the lower connection flanges. The segments may be disposed at acute angles and converge into one another at or near the upper connection flange.
Abstract:
Methods for producing a flat product from an iron-based shape memory alloy may involve casting a melt comprised of iron, alloying elements, and impurities into a strip having a thickness of 1-30 mm and cooling the melt as the strip is formed. A twin-roll caster may be employed to help cool and form the melt into the strip. The resultant flat product is highly resistant to bending and is robust under pressure and torsion.
Abstract:
A bumper for a vehicle, including at least one profile, in particular an open profile, from a first material, having at least one ribbed structure formed from ribs from a second material, the ribbed structure being disposed along the profile at least in portions and at least in portions being connected to the profile in a force-fitting, form-fitting and/or materially integral manner in order for the profile to be reinforced. The bumper meets the requirements set in the event of collision loads and can be optimized in terms of load is achieved in that the ribbed structure is formed from fiber-reinforced plastic and has at least one first region and one second region, which differ from one another in terms of at least one property.
Abstract:
A method for the individualized adaptation of the shape of components includes providing a basic material for producing the components. Next at least one unifying production method is selected. The components are then produced with a geometrically identical base shape by the unifying production method. Then at least one individualizing production method is selected. Then the shape of the components is adapted to at least two different final shapes by the individualizing production method that is different from the unifying production method. The final shape of each component differs from its basic shape.
Abstract:
A steel strip with a plurality of markers and a method for marking a steel strip with material properties is provided. The method comprises measuring material properties of the steel strip at a plurality of discrete strip positions. A plurality of markers are applied to the strip edge at the strip positions, each marker from the plurality of markers containing a material identifier relating to the measured material properties at the respective strip position of the marker.
Abstract:
A strut linkage for a steel construction may involve a tower of a wind turbine and/or a corner post of a lattice tower. In order that high forces can be removed via the strut linkage without causing increased stress concentrations, excessive use of material, and/or an excessive structural outlay, a plate element is provided for arranging between, preferably load-bearing, steel construction components. At least one connection element, which may be connected to the plate element, may be utilized to fasten at least one strut and/or guy of the steel construction to the steel construction components via the plate element.”
Abstract:
One example method for producing a component from organic sheets may comprise placing a first organic sheet and a second organic sheet next to one another to form a component preform, forming at least one overlapping joining zone by tacking the first and second organic sheets together with a connecting part in the form of a third organic sheet, transferring the component preform to a joining tool, using the joining tool to form a joined component by connecting the organic sheets through melting and compression in the overlapping joining zone, and consolidating the joined component at least in the zone of the overlapping joining zone.
Abstract:
A tower for a wind turbine may include an upper tower portion and a lower tower portion. The upper tower portion may include a tubular tower, and the lower tower portion may include a lattice tower. To improve ergonomics and work safety and make it possible to obtain a structural design with optimized forces, the lower tower portion may include a central tube positioned centrally within the lattice tower. Further, the central tube may have a smaller diameter, at least in certain portions, than at least part of the tubular tower of the upper tower portion. The tower may also include a transition piece between the upper tower portion and the lower tower portion. The transition piece may join the tubular tower of the upper tower portion and the central tube of the lower tower portion.”
Abstract:
A reflector for helio-thermal systems may include a metallic carrier plate and a reflective coating that is applied to the carrier plate and is constructed from at least one metallic reflective layer and at least one protective layer applied to the reflective layer. Such reflectors have high reflective capabilities, are robust in relation to mechanical stress, and can be manufactured cost effectively. Such reflectors are also lightweight and dimensionally stable due to the fact that the carrier plate may be formed from a sandwich plate having at least one nonmetallic intermediate layer disposed between an upper and lower metallic cover plate. The upper cover plate may have a smoothed surface to which the reflective layer can be applied. The smoothed surface prior to the reflective layer being applied may have an arithmetic mean surface parameter Ra of less than 0.03 μm. Methods for manufacturing such reflectors are also disclosed.