Abstract:
Provided are an SiC single-crystal ingot containing an SiC single crystal having a low threading dislocation density and low resistivity; an SiC single crystal; and a production method for the SiC single crystal. The SiC single crystal ingot contains a seed crystal and a grown crystal grown by a solution process in which the seed crystal is the base point, the grown crystal of the SiC single crystal ingot containing a nitrogen density gradient layer in which the nitrogen content increases in the direction of growth from the seed crystal.
Abstract:
Provided are an SiC single-crystal ingot containing an SiC single crystal having a low threading dislocation density and low resistivity; an SiC single crystal; and a production method for the SiC single crystal. The SiC single crystal ingot contains a seed crystal and a grown crystal grown by a solution process in which the seed crystal is the base point, the grown crystal of the SiC single crystal ingot containing a nitrogen density gradient layer in which the nitrogen content increases in the direction of growth from the seed crystal.
Abstract:
A SiC single crystal having high crystallinity and a large diameter is provided.A SiC single crystal comprising a seed crystal with a c-plane and a non-c-plane, and a c-plane growth portion and an enlarged diameter portion that have grown from the c-plane and the non-c-plane of the seed crystal as origins in the direction of the c-plane and the direction of the non-c-plane, wherein a continuous region free of threading dislocations is present in a peripheral portion of a plane that is parallel to the c-plane of the seed crystal, and contains the seed crystal and the enlarged diameter portion, wherein the area of the continuous region occupies 50% or more of the total area of the plane.
Abstract:
A method of production of an SiC semiconductor device, which can form an ohmic electrode while preventing electrode metal from diffusing in the SiC single crystal substrate, includes a step of forming an ohmic electrode on an SiC substrate, characterized by forming a gettering layer with a defect density higher than the SiC substrate on that substrate to be parallel with the substrate surface, then forming the ohmic electrode the gettering layer outward from the substrate.
Abstract:
A SiC single crystal having high crystallinity and a large diameter is provided.A SiC single crystal comprising a seed crystal with a c-plane and a non-c-plane, and a c-plane growth portion and an enlarged diameter portion that have grown from the c-plane and the non-c-plane of the seed crystal as origins in the direction of the c-plane and the direction of the non-c-plane,wherein a continuous region free of threading dislocations is present in a peripheral portion of a plane that is parallel to the c-plane of the seed crystal, and contains the seed crystal and the enlarged diameter portion, wherein the area of the continuous region occupies 50% or more of the total area of the plane.
Abstract:
A method of production of an SiC semiconductor device, which can form an ohmic electrode while preventing electrode metal from diffusing in the SiC single crystal substrate, includes a step of forming an ohmic electrode on an SiC substrate, characterized by forming a gettering layer with a defect density higher than the SiC substrate on that substrate to be parallel with the substrate surface, then forming the ohmic electrode the gettering layer outward from the substrate.
Abstract:
The present invention provides a method of production of SiC single crystal using the solution method which prevents the formation of defects due to causing a seed crystal to touch the melt for seed touch, and thereby causes growth of an Si single crystal reduced in defect density. The method of the present invention is a method of production of an SiC single crystal which causes an SiC seed crystal to touch a melt containing Si in a graphite crucible to thereby cause growth of the SiC single crystal on the SiC seed crystal, characterized by making the SiC seed crystal touch the melt in the state where the C is not yet saturated.
Abstract:
The present invention provides a method of production of an SiC single crystal using the solution method which prevents the formation of defects due to seed tough, i.e., causing a seed crystal to touch the melt, and thereby causes growth of an Si single crystal reduced in defect density. The method of the present invention is a method of production of an SiC single crystal by causing an SiC seed crystal to touch a melt containing Si in a graphite crucible to thereby cause growth of the SiC single crystal on the SiC seed crystal, characterized by making the SiC seed crystal touch the melt, then making the melt rise in temperature once to a temperature higher than the temperature at the time of touch and also higher than the temperature for causing growth.
Abstract:
A method for manufacturing an n-type SiC single crystal, enables the suppression of the variation in nitrogen concentration among a plurality of n-type SiC single crystal ingots manufactured. A method includes the steps of: providing a manufacturing apparatus (100) including a chamber (1) having an area in which a crucible (7) is to be disposed; heating the area in which the crucible (7) is to be disposed and evacuating the gas in the chamber (1); filling, after the evacuation, the chamber (1) with a mixed gas containing a noble gas and nitrogen gas; heating and melting a starting material housed in the crucible (7) disposed in the area to produce a SiC solution (8) containing silicon and carbon; and immersing a SiC seed crystal into the SiC solution under the mixed gas atmosphere to grow an n-type SiC single crystal on the SiC seed crystal.
Abstract:
A process for producing a semiconductor device includes: forming an SiC epitaxial layer on an SiC substrate; implanting the epitaxial layer with ions; forming a gettering layer having a higher defect density than a defect density of the SiC substrate; and carrying out a heat treatment on the epitaxial layer. The semiconductor device includes an SiC substrate, an SiC epitaxial layer formed on the SiC substrate, and a gettering layer having a higher defect density than a defect density of the SiC substrate.