Abstract:
A semiconductor device includes a first active region, a second active region, a first gate line disposed to overlap the first and second active regions, a second gate line disposed to overlap the first and second active regions, a first metal line electrically connecting the first and second gate lines and providing a first signal to both the first and second gate lines, a first contact structure electrically connected to part of the first active region between the first and second gate lines, a second contact structure electrically connected to part of the second active region between the first and second gate lines, and a second metal line electrically connected to the first and second contact structures and transmitting a second signal, wherein an overlapped region that is overlapped by the second metal line does not include a break region.
Abstract:
A semiconductor device includes a scan input circuit, a master latch, a slave latch, a first inverter, and a scan output circuit. The scan input circuit is configured to receive a scan input signal, a first data signal, and a scan enable signal and select any one of the first data signal and the scan input signal in response to the scan enable signal to output a first select signal. The master latch is configured to latch the first select signal and output a first output signal. The slave latch is configured to latch the first output signal and output a second output signal. The first inverter is configured to invert the second output signal. The scan output circuit is configured to receive a signal output from the slave latch and an external signal and output a first scan output signal.
Abstract:
A semiconductor circuit includes a first logic gate that receives inputs of a first input signal, a clock signal and a feedback signal and performs a first logical operation to output a first output signal. A second logic gate that receives inputs of the first output signal of the first logic gate, the clock signal, and an inverted output signal of the first input signal and performs a second logical operation to output the feedback signal.
Abstract:
A semiconductor device includes a first active region, a second active region, a first gate line disposed to overlap the first and second active regions, a second gate line disposed to overlap the first and second active regions, a first metal line electrically connecting the first and second gate lines and providing a first signal to both the first and second gate lines, a first contact structure electrically connected to part of the first active region between the first and second gate lines, a second contact structure electrically connected to part of the second active region between the first and second gate lines, and a second metal line electrically connected to the first and second contact structures and transmitting a second signal, wherein an overlapped region that is overlapped by the second metal line does not include a break region.
Abstract:
A lighting system includes a digital addressable lighting interface (DALI) master controller, a lighting driver, and a signal converter. The DALI master controller is connected to a management server. The lighting driver operates a lighting device including a light emitting diode (LED). The signal converter is connected to the DALI master controller by a DALI bus operating according to a DALI communication protocol, and is communicatively connected to the lighting driver via a wireless communication connection operating according to a wireless communication protocol. The signal converter inter-converts a signal transmitted and received from the DALI master controller according to the DALI communication protocol and a signal transmitted to and received from the lighting driver according to the wireless communication protocol so as to enable communication between the lighting driver and the DALI master controller.
Abstract:
A scan flip-flop may include a selector outputting a data signal or a scan input signal in response to a scan enable signal, and a flip-flop that latches an output signal of the selector or the data signal, based on a clock signal and a low voltage signal.
Abstract:
A semiconductor device including a memory device which has improved reliability is provided. The semiconductor device comprises at least one data pin configured to transfer a data signal, at least one command address pin configured to transfer a command and an address, at least one serial pin configured to transfer a serial data signal, and processing circuitry connected to the at least one data pin and the at least one serial pin. The processing circuitry is configured to receive the data signal from outside through the at least one data pin, and the processing circuitry is configured to output the serial data signal through the at least one serial pin in response to the received data signal.
Abstract:
A memory module includes a memory device configured to receive a first refresh command from a host, and perform a refresh operation in response to the first refresh command during a refresh time, and a computing unit configured to detect the first refresh command provided from the host to the memory device, and write a first error pattern at a first address of the memory device during the refresh time.
Abstract:
A master-slave flip flop includes a master latch and a slave latch which are sequentially disposed on a substrate in a first direction. The master latch includes a first NMOS transistor and a first PMOS transistor each gated by a first clock signal. The first NMOS transistor and the first PMOS transistor share a first gate line extending in a second direction intersecting with the first direction. The slave latch includes a second NMOS transistor and a second PMOS transistor each gated by the first clock signal. The second NMOS transistor and the second NMOS transistor share a second gate line extending in the second direction. The first gate line and the second gate line are electrically connected to each other.
Abstract:
The present invention relates to an apparatus and method for location based call signal conversion in a wireless communication network. The location based call signal conversion apparatus comprises an LBS (Location Based Service) server that provides location information on user terminals, and a call signal conversion server that converts the called signal to anyone called terminal on the called target terminal list that has been set up according to the current location of said called user terminal if a call connection request to a receiving user terminal from a sending user terminal is sensed among said user terminals, and if conditions for call signal conversion are satisfied according to the location and state of said called user terminal.