Abstract:
A fabricating method of a semiconductor device includes providing a substrate having a first region and a second region, forming a plurality of first gates in the first region of the substrate, such that the first gates are spaced apart from each other at a first pitch, forming a plurality of second gates in the second region of the substrate, such that the second gates are spaced apart from each other at a second pitch different from the first pitch, implanting an etch rate adjusting dopant into the second region to form implanted regions, while blocking the first region, forming a first trench by etching the first region between the plurality of first gates, and forming a second trench by etching the second region between the plurality of second gates.
Abstract:
A method for forming a fine pattern includes forming line patterns and a connection pattern on a semiconductor substrate, the line patterns extending in a first direction and spaced apart from each other in a second direction intersecting the first direction, and the connection pattern connecting portions of the line patterns adjacent to each other in the second direction, and performing an ion beam etching process on the connection pattern. The ion beam etching process provides an ion beam in an incident direction parallel to a plane defined by the first direction and a third direction perpendicular to a top surface of the semiconductor substrate, and the incident direction of the ion beam is not perpendicular to the top surface of the semiconductor substrate.
Abstract:
A semiconductor device includes an interlayer insulating layer including a first insulating layer on a substrate, and a plurality of interconnections in the first insulating layer. The interlayer insulating layer includes a first region, and a second region including an air gap. The air gap is defined between a pair of the interconnections in the second region. A top surface of the first insulating layer of the first region is lower than a top surface of at least one of the interconnections in the first region.
Abstract:
A semiconductor device includes a substrate, a first lower wiring line on the substrate, a first insulation layer on the first lower wiring line, a first dielectric barrier layer and a first etch stop layer sequentially stacked on the first insulation layer, a second insulation layer on the first etch stop layer, a first upper wiring line extending through the second insulation layer, the first etch stop layer, and the first dielectric barrier layer, and a first conductive via in the first insulation layer and electrically connecting the first lower wiring line and the first upper wiring line. An upper surface of the first conductive via protrudes above a lower surface of the first upper wiring line.
Abstract:
A semiconductor device includes a plurality of wiring structures spaced apart from each other, and an insulating interlayer structure. Each of the wiring structures includes a metal pattern and a barrier pattern covering a sidewall, a bottom surface, and an edge portion of a top surface of the metal pattern and not covering a central portion of the top surface of the metal pattern. The insulating interlayer structure contains the wiring structures therein, and has an air gap between the wiring structures.
Abstract:
A semiconductor device includes an interlayer insulating layer including a first insulating layer on a substrate, and a plurality of interconnections in the first insulating layer. The interlayer insulating layer includes a first region, and a second region including an air gap. The air gap is defined between a pair of the interconnections in the second region. A top surface of the first insulating layer of the first region is lower than a top surface of at least one of the interconnections in the first region.
Abstract:
A semiconductor device includes an interlayer insulating layer including a first insulating layer on a substrate, and a plurality of interconnections in the first insulating layer. The interlayer insulating layer includes a first region, and a second region including an air gap. The air gap is defined between a pair of the interconnections in the second region. A top surface of the first insulating layer of the first region is lower than a top surface of at least one of the interconnections in the first region.
Abstract:
A semiconductor device includes an interlayer insulating layer including a first insulating layer on a substrate, and a plurality of interconnections in the first insulating layer. The interlayer insulating layer includes a first region, and a second region including an air gap. The air gap is defined between a pair of the interconnections in the second region. A top surface of the first insulating layer of the first region is lower than a top surface of at least one of the interconnections in the first region.
Abstract:
A method for forming a fine pattern includes forming line patterns and a connection pattern on a semiconductor substrate, the line patterns extending in a first direction and spaced apart from each other in a second direction intersecting the first direction, and the connection pattern connecting portions of the line patterns adjacent to each other in the second direction, and performing an ion beam etching process on the connection pattern. The ion beam etching process provides an ion beam in an incident direction parallel to a plane defined by the first direction and a third direction perpendicular to a top surface of the semiconductor substrate, and the incident direction of the ion beam is not perpendicular to the top surface of the semiconductor substrate.
Abstract:
A fabricating method of a semiconductor device includes providing a substrate having a first region and a second region, forming a plurality of first gates in the first region of the substrate, such that the first gates are spaced apart from each other at a first pitch, forming a plurality of second gates in the second region of the substrate, such that the second gates are spaced apart from each other at a second pitch different from the first pitch, implanting an etch rate adjusting dopant into the second region to form implanted regions, while blocking the first region, forming a first trench by etching the first region between the plurality of first gates, and forming a second trench by etching the second region between the plurality of second gates.