Abstract:
An electronic device and an operating method of an electronic device are provided. The operating method includes configuring a self-correction condition for adjusting an information deletion and dropout rate, performing iterative decoding on the received information using decoding factors and a self-correction technique, determining whether decoding of the codeword succeeds or fails, based on a result of the decoding, storing a received signal and the codeword which are successfully decoded, based on a determination result, and optimizing the decoding factors, based on the stored received signal and codeword.
Abstract:
An operating method and an apparatus are provided in which state information is received from at least one of a higher layer and a plurality of terminals. A respective allocation resource is determined for each of the plurality of terminals, based on the state information. A respective guard band is determined to be allocated for each of the plurality of terminals, based on the respective allocation resource. Respective resource blocks (RBs) are determined for each of the plurality of terminals, based on the respective guard band. Information about the determined respective RBs is transmitted to respective terminals of the plurality of terminals.
Abstract:
A nonvolatile memory device includes a memory cell array; and a high voltage generator arranged to generate a high voltage to be supplied to the memory cell array. The high voltage generator includes a pump unit block having a plurality of pump units supplied with an external voltage and at least one of the pumps is engaged in pumping the external voltage to a higher, output, voltage, at a steady clock rate. The number of pumps engaged in pumping is increased until a predetermined period has elapsed. The rate at which the number of pumps is increased depends upon the value of the external voltage.
Abstract:
A nonvolatile memory device includes a memory cell array; and a high voltage generator arranged to generate a high voltage to be supplied to the memory cell array. The high voltage generator includes a pump unit block having a plurality of pump units supplied with an external voltage and at least one of the pumps is engaged in pumping the external voltage to a higher, output, voltage, at a steady clock rate. The number of pumps engaged in pumping is increased until a predetermined period has elapsed. The rate at which the number of pumps is increased depends upon the value of the external voltage.
Abstract:
A substrate inspection apparatus includes a light source unit, a pulsed beam matching unit, a substrate support unit, an incidence angle adjusting unit, and a detecting unit. The light source unit emits a first laser beam having a first wavelength and a second laser beam having a second wavelength. The pulsed beam matching unit matches the first laser beam and the second laser beam to superimpose a pulse of the first laser beam on a pulse of the second laser beam in time and space. The substrate support unit supports a substrate to be inspected. The incidence angle adjusting unit adjusts angles of incidence of the matched first laser beam and second laser beams to irradiate the first laser beam and the second laser beam on the substrate, and mixes the first laser beam and the second laser beam to generate an evanescent wave on the substrate. The evanescent wave generates scattered light due to a defect of the substrate. The detecting unit detects the scattered light generated due to the defect of the substrate.
Abstract:
A memory device accessed by circuits operating based on a first supply voltage. The memory device includes a cell array electrically connected to a plurality of word lines and a plurality of bit lines; a row driver configured to select one word line of the plurality of word lines based on a row address; a precharge circuit configured to precharge the plurality of bit lines based on the first supply voltage; a column driver configured to select at least one bit line of the plurality of bit lines based on a column address; and a read circuit configured to read data stored in the cell array through the at least one bit line. The cell array, the row driver, the column driver, and the read circuit operate based on a second supply voltage, which is higher than the first supply voltage.
Abstract:
A wafer inspection apparatus includes: an objective lens on an optical path of first and second input beams; and an image sensor configured to generate an image of the wafer based on scattered light according to a nonlinear optical phenomenon based on the first and second input beams, wherein the first input beam passing through the objective lens is obliquely incident on the wafer at a first incident angle with respect to a vertical line that is normal to an upper surface of the wafer, the second input beam passing through the objective lens is incident on the wafer at a second incident angle oblique to the vertical line that is normal to the upper surface of the wafer, and the first and second incident angles are different from each other.
Abstract:
An operating method of a storage device which includes a first nonvolatile memory device and a second nonvolatile memory device includes detecting sudden power-off, suspending an operation being performed in the first nonvolatile memory device, in response to the detected sudden power-off, writing suspension information about the suspended operation into the second nonvolatile memory device, and performing a block management operation on the first nonvolatile memory device based on the suspension information written into the second nonvolatile memory device, in power-up after the sudden power-off.
Abstract:
A high voltage switch operates in response to a first drive voltage and a second drive voltage higher than the first drive voltage. The high voltage switch includes a PMOS transistor transmitting the second drive voltage to an output terminal according to a voltage applied to its gate, a first depletion mode transistor providing the second drive voltage to the PMOS transistor according to an output signal fed back from the output terminal, a second depletion mode transistor receiving the second drive voltage through one end and providing a switching voltage to another end according to a switching control signal, and a level shifter providing the switching voltage to a gate of the PMOS transistor according to an enable signal and a reverse enable signal.
Abstract:
A high voltage switch of a nonvolatile memory device includes a depletion type NMOS transistor configured to switch a second driving voltage in response to an output signal of the high voltage switch; at least one inverter configured to convert a voltage of an input signal of the high voltage switch into a first driving voltage or a ground voltage, wherein the first and second driving voltages are received from an external device; and a PMOS transistor configured to transfer the second driving voltage provided to a first terminal of the PMOS transistor from the depletion type NMOS transistor to a second terminal of the PMOS transistor as the output signal in response to an output of the at least one inverter, wherein the output of the at least one inverter is transferred to a gate terminal of the PMOS transistor.