Abstract:
Provided is a method of fabricating a semiconductor device. The method includes forming a gate pattern on a semiconductor substrate, injecting amorphization elements into the semiconductor substrate to form an amorphous portion at a side of the gate pattern, removing the amorphous portion to form a recess region, and forming a source/drain pattern in the recess region. When the recess region is formed, an etch rate of the amorphous portion is substantially the same in two different directions (e.g., and any other direction) of the semiconductor substrate.
Abstract:
A semiconductor device is disclosed. The device includes a substrate including an active region defined by a device isolation layer, a fin pattern protruding from the substrate and extending in a first direction, the fin pattern including a gate fin region and a source/drain fin region, a gate pattern disposed on the gate fin region to extend in a second direction crossing the first direction, and a source/drain portion provided on a sidewall of the source/drain fin region. When measured in the second direction, a width of the source/drain fin region is different from a width in the second direction of the gate fin region.
Abstract:
The inventive concepts provide methods of manufacturing a semiconductor device. The method includes patterning a substrate to form an active pattern, forming a gate pattern intersecting the active pattern, forming a gate spacer on a sidewall of the gate pattern, forming a growth-inhibiting layer covering an upper region of the gate pattern, and forming source/drain electrodes at opposite first and second sides of the gate pattern.
Abstract:
A semiconductor device is provided. The semiconductor device includes: an active region on a semiconductor substrate; a channel region on the active region; a source/drain region adjacent to the channel region on the active region; a gate structure overlapping the channel region, on the channel region; a contact structure on the source/drain region; a gate spacer between the contact structure and the gate structure; and a contact spacer surrounding a side surface of the contact structure. The source/drain region includes a first epitaxial region having a recessed surface and a second epitaxial region on the recessed surface of the first epitaxial region, and the second epitaxial region includes an extended portion, extended from a portion overlapping the contact structure in a vertical direction, in a horizontal direction and overlapping the contact spacer in the vertical direction.
Abstract:
Methods of forming an integrated circuit device are provided. The methods may include forming a gate structure on a substrate, forming a first etch mask on a sidewall of the gate structure, anisotropically etching the substrate using the gate structure and the first etch mask as an etch mask to form a preliminary recess in the substrate, forming a sacrificial layer in the preliminary recess, forming a second etch mask on the first etch mask, etching the sacrificial layer and the substrate beneath the sacrificial layer using the gate structure and the first and second etch masks as an etch mask to form a source/drain recess in the substrate, and forming a source/drain in the source/drain recess. A sidewall of the source/drain recess may be recessed toward the gate structure relative to an outer surface of the second etch mask.
Abstract:
A semiconductor device includes an active pattern protruding from a substrate and extending in a first direction, first and second gate electrodes intersecting the active pattern in a second direction intersecting the first direction, and a source/drain region disposed on the active pattern between the first and second gate electrodes. The source/drain region includes a first part adjacent to an uppermost surface of the active pattern and provided at a level lower than the uppermost surface of the active pattern, and a second part disposed under the first part so as to be in contact with the first part. A width of the first part along the first direction decreases in a direction away from the substrate, and a width of the second part along the first direction increases in a direction away from the substrate.
Abstract:
Provided is a method of fabricating a semiconductor device. The method includes forming a gate pattern on a semiconductor substrate, injecting amorphization elements into the semiconductor substrate to form an amorphous portion at a side of the gate pattern, removing the amorphous portion to form a recess region, and forming a source/drain pattern in the recess region. When the recess region is formed, an etch rate of the amorphous portion is substantially the same in two different directions (e.g., and any other direction) of the semiconductor substrate.
Abstract:
Provided is a semiconductor device which includes a substrate including a first region and a second region different from the first region, a first active pattern provided on the substrate in the first region, a second active pattern provided on the substrate in the second region, a first gate structure crossing over the first active pattern and a second gate structure crossing over the second active pattern, first source/drain regions disposed on the first active pattern at opposite sides of the first gate structure, second source/drain regions disposed on the second active pattern at opposite sides of the second gate structure, and auxiliary spacers disposed in the first region to cover a lower portion of each of the first source/drain regions.
Abstract:
A method of manufacturing a semiconductor device includes forming an active pattern protruding from a semiconductor substrate, forming a dummy gate pattern crossing over the active pattern, forming gate spacers on opposite first and second sidewalls of the dummy gate pattern, removing the dummy gate pattern to form a gate region exposing an upper surface and sidewalls of the active pattern between the gate spacers, recessing the upper surface of the active pattern exposed by the gate region to form a channel recess region, forming a channel pattern in the channel recess region by a selective epitaxial growth (SEG) process, and sequentially forming a gate dielectric layer and a gate electrode covering an upper surface and sidewalls of the channel pattern in the gate region. The channel pattern has a lattice constant different from that of the semiconductor substrate.
Abstract:
A semiconductor device is provided. The semiconductor device includes: an active region on a semiconductor substrate; a channel region on the active region; a source/drain region adjacent to the channel region on the active region; a gate structure overlapping the channel region, on the channel region; a contact structure on the source/drain region; a gate spacer between the contact structure and the gate structure; and a contact spacer surrounding a side surface of the contact structure. The source/drain region includes a first epitaxial region having a recessed surface and a second epitaxial region on the recessed surface of the first epitaxial region, and the second epitaxial region includes an extended portion, extended from a portion overlapping the contact structure in a vertical direction, in a horizontal direction and overlapping the contact spacer in the vertical direction.