Abstract:
A sputtering device includes: a sputtering target; a substrate supporter facing the sputtering target and upon which a substrate is disposed; an anode mask between the sputtering target and the substrate which is on the substrate supporter; and a gas distribution member between the anode mask and the sputtering target, and including a plurality of gas distribution tubes separated from each other. Each gas distribution tube includes a plurality of discharge holes defined therein and through which gas is discharged to a vacuum chamber configured to receive the sputtering device.
Abstract:
A metal wire included in a display device, the metal wire includes a first metal layer including a nickel-chromium alloy, a first transparent oxide layer disposed on the first metal layer, and a second metal layer disposed on the first transparent oxide layer.
Abstract:
A display panel includes; a lower gate line, a lower data line disposed substantially perpendicular to the lower gate line, a thin film transistor (“TFT”) connected to the lower gate line and the lower data line, an insulating layer disposed on the lower gate line, the lower data line, and the TFT and having a plurality of trenches exposing the lower gate line and the lower data line, an upper gate line disposed in the trench on the lower gate line, an upper data line disposed in the trench on the lower data line, and a pixel electrode connected to the TFT.
Abstract:
A liquid crystal display (LCD) includes thin film transistors (TFTs) each having spaced apart source/drain electrodes and an oxide-type semiconductive film disposed over and between the source/drain electrodes to define an active layer. Each of the source/drain electrodes includes a portion of a subdivided transparent conductive layer where one subdivision of the transparent conductive layer continues from within its one of the source/drain electrodes to define an optically exposed pixel-electrode that is reliably connected integrally to the one source/drain electrode. Mass production costs can be reduced and production reliability increased because a fewer number of photolithographic masks can be used to form the TFTs.
Abstract:
An electrostatic chuck and a substrate processing apparatus including the same are disclosed. In one aspect, the electrostatic chuck includes a stage configured to support a substrate including a panel formation region and a dummy region surrounding the panel formation region. The electrostatic chuck includes a substrate fixing unit including a plurality of electrode patterns insulated from the substrate and spaced apart from one another, the substrate fixing unit at least partially overlapping the dummy region of the substrate and not overlapping the panel formation region of the substrate.
Abstract:
A thin film transistor display panel includes a substrate, a gate wire on the substrate and including a gate line and a gate electrode; a gate insulating layer on the gate wire; a semiconductor layer on the gate insulating layer; a data wire including a source electrode on the semiconductor layer, a drain electrode opposing the source electrode with respect to the gate electrode, and a data line; a passivation layer on the data wire having a contact hole exposing the drain electrode; and a pixel electrode on the passivation layer and connected to the drain electrode through the contact hole. The gate wire has a first region and second region where the gate line and the gate electrode are positioned, respectively. The thickness of the gate wire in the first region is greater than the thickness of the gate wire in the second region.
Abstract:
A thin film transistor substrate includes a base substrate and a thin film transistor. The base substrate includes a gate line and a data line. The thin film transistor is connected to the gate line and the data line. The thin film transistor includes a gate electrode, a semiconductor pattern and source, drain electrodes. The gate electrode is disposed on the base substrate. The semiconductor pattern overlaps with the gate electrode. The source, drain electrodes is spaced apart from each other. The source electrode includes a first source layer, a second source layer disposed on the first source layer and a first diffusion barrier disposed between the first source layer and second source layer. The drain electrode includes a first drain layer, a second drain layer disposed on the first drain layer and a second diffusion barrier disposed between the first drain layer and second drain layer.
Abstract:
A metal wire included in a display device, the metal wire includes a first metal layer including a nickel-chromium alloy, a first transparent oxide layer disposed on the first metal layer, and a second metal layer disposed on the first transparent oxide layer.
Abstract:
A thin film transistor array panel is provided and includes a gate line, a gate insulating layer covering the gate line, a semiconductor layer disposed on the gate insulating layer, and a data line and a drain electrode disposed on the semiconductor layer. The data line and the drain electrode have a dual-layered structure including a lower layer and an upper layer with the lower layer having a first portion protruded outside the upper layer and the semiconductor layer having a second portion protruded outside the edge of the lower layer.
Abstract:
A manufacturing method of a thin film transistor (TFT) includes forming a gate electrode including a metal that can be combined with silicon to form silicide on a substrate and forming a gate insulation layer by supplying a gas which includes silicon to the gate electrode at a temperature below about 280° C. The method further includes forming a semiconductor on the gate insulation layer, forming a data line and a drain electrode on the semiconductor and forming a pixel electrode connected to the drain electrode.