Abstract:
A method of fabricating a semiconductor package is provided. The method includes providing a package substrate strip including chip mounting regions, bridge regions connecting the chip mounting regions to each other, and through slits disposed between the chip mounting regions. A side shielding part including a lower portion filling the through slits and an upper portion upwardly extending from the lower side shielding part to protrude from the package substrate strip is formed. Semiconductor chips are mounted on the chip mounting regions. Mold patterns are formed on the package substrate strip to cover the semiconductor chips and to expose a top surface of the side shielding part. A top shielding part is formed on the mold patterns to contact the side shielding part.
Abstract:
The disclosure relates to a stacked package and a method for manufacturing the same. The stacked package includes: a lower package including a substrate formed with ball lands in a periphery of an upper surface thereof, a semiconductor chip mounted over the upper surface, first solder balls formed over the ball lands and each having a side surface cut along an edge of the substrate and a polished upper surface, and a mold part for molding the upper surface including the semiconductor chip and the first solder balls, the cutted side surfaces and polished upper surfaces being exposed by the mold part; and an upper package stacked over the lower package and provided with second solder balls bonded to the first solder balls.
Abstract:
The semiconductor package includes an upper semiconductor chip stacked on a package substrate and a support layer or a lower semiconductor chip disposed between the upper semiconductor chip and the package substrate. The upper semiconductor chip includes a protrusion downwardly extending from an edge thereof. The protrusion of the upper semiconductor chip is combined with a sidewall of the support layer or the lower semiconductor chip. Related methods are also provided.
Abstract:
The semiconductor package includes: a substrate having a window and first and second bond fingers arranged over a first surface along a periphery of the window; a first semiconductor chip disposed within the window and having a plurality of first bonding pads arranged over edges of an upper surface; a plurality of first connection members electrically coupling the first bonding pads with the first bonding fingers; a second semiconductor chip disposed over the first semiconductor chip and the first surface of the substrate and a plurality of second bonding pads in the edges of the lower surface; a plurality of second connection members electrically coupling the second bonding pads with the second bonding fingers of the substrate adjacent to the second bonding pads; and an encapsulation member formed over the first surface of the substrate to cover side surfaces of the second semiconductor chip.
Abstract:
A stack package includes a cover film, a first package having a first semiconductor chip which is attached to the cover film, a first adhesive member which is formed to seal the first semiconductor chip and a surface of the cover film, and a first circuit pattern which is disposed over the first adhesive member and electrically connected with the first semiconductor chip; a second package disposed over the first package, having a second semiconductor chip which is electrically connected with the first circuit pattern, a second adhesive member which is formed to seal the second semiconductor chip, and a second circuit pattern which is formed over the second adhesive member, and a via formed to pass through the second circuit pattern and the second adhesive member and to be electrically connected with the first circuit pattern and the second circuit pattern.
Abstract:
There are proposed a method and apparatus for manufacturing a chip package in which bonding wires are coupled with contact pads in which an overhang holder holds and fixes portions of a surface adjacent to portions where the contact pads are located.
Abstract:
A stacked semiconductor package includes a semiconductor package module including a plurality of semiconductor packages each of which has a first surface, a second surface facing away from the first surface, side surfaces connecting the first surface and the second surface and through-holes formed on the side surfaces to pass through the first surface and the second surface and which are stacked such that their through-holes vertically connect with one another, and adhesive members which are formed between the semiconductor packages and attach the semiconductor packages to one another, a main substrate supporting the semiconductor package module and formed, on a third surface thereof facing the semiconductor package module, with main connection pads which are aligned with the through-holes, and conductive connection members formed in the through-holes and electrically connecting the semiconductor packages with the main connection pads.