Abstract:
A semiconductor device may include a substrate, a first interlayered insulating layer on the substrate having openings, conductive patterns provided in the openings, first to fourth insulating patterns stacked on the substrate provided with the conductive patterns, and a second interlayered insulating layer provided on the fourth insulating pattern.
Abstract:
A semiconductor device is provided. The semiconductor device includes first metal lines on a lower layer, a dielectric barrier layer provided on the lower layer to cover side and top surfaces of the first metal lines, an etch stop layer provided on the dielectric barrier layer to define gap regions between the first metal lines, an upper insulating layer on the etch stop layer, and a conductive via penetrating the upper insulating layer, the etch stop layer, and the dielectric barrier layer to contact a top surface of a first metal line. The etch stop layer includes first portions on the first metal lines and second portions between the first metal lines. The second portions of the etch stop layer are higher than the first portions.
Abstract:
A semiconductor device includes an interlayer insulating layer including a first insulating layer on a substrate, and a plurality of interconnections in the first insulating layer. The interlayer insulating layer includes a first region, and a second region including an air gap. The air gap is defined between a pair of the interconnections in the second region. A top surface of the first insulating layer of the first region is lower than a top surface of at least one of the interconnections in the first region.
Abstract:
A semiconductor device includes an interlayer insulating layer including a first insulating layer on a substrate, and a plurality of interconnections in the first insulating layer. The interlayer insulating layer includes a first region, and a second region including an air gap. The air gap is defined between a pair of the interconnections in the second region. A top surface of the first insulating layer of the first region is lower than a top surface of at least one of the interconnections in the first region.
Abstract:
A semiconductor device includes an interlayer insulating layer including a first insulating layer on a substrate, and a plurality of interconnections in the first insulating layer. The interlayer insulating layer includes a first region, and a second region including an air gap. The air gap is defined between a pair of the interconnections in the second region. A top surface of the first insulating layer of the first region is lower than a top surface of at least one of the interconnections in the first region.
Abstract:
A semiconductor device comprises a lower structure on a substrate and including a recess region, first and second barrier layers covering an inner surface of the recess region and a top surface of the lower structure, the inner surface of the recess region including a bottom surface and an inner sidewall connecting the bottom surface to the top surface of the lower structure, and an interlayer dielectric layer provided on the second barrier layer and defining an air gap in the recess region. A first step coverage is obtained by dividing a thickness of the first barrier layer on an inner sidewall of the recess region by a thickness of the first barrier layer on the top surface of the lower structure. A second step coverage is obtained by dividing a thickness of the second barrier layer on the inner sidewall of the recess region by a thickness of the second barrier layer on the top surface of the lower structure. The first step coverage is different from the second step coverage.
Abstract:
A semiconductor device includes an interlayer insulating layer including a first insulating layer on a substrate, and a plurality of interconnections in the first insulating layer. The interlayer insulating layer includes a first region, and a second region including an air gap. The air gap is defined between a pair of the interconnections in the second region. A top surface of the first insulating layer of the first region is lower than a top surface of at least one of the interconnections in the first region.
Abstract:
A method of treating a porous dielectric layer includes preparing a substrate on which the porous dielectric layer including an opening and pores exposed by the opening is formed, supplying a first precursor onto the substrate to form a first sub-sealing layer sealing the exposed pores, and supplying a second precursor onto the first sub-sealing layer to form a second sub-sealing layer covering the first sub-sealing layer. Each of the first and second precursors includes silicon, and a molecular weight of the second precursor is smaller than that of the first precursor.
Abstract:
A semiconductor device may include a substrate, a first interlayered insulating layer on the substrate having openings, conductive patterns provided in the openings, first to fourth insulating patterns stacked on the substrate provided with the conductive patterns, and a second interlayered insulating layer provided on the fourth insulating pattern.
Abstract:
A method of treating a porous dielectric layer includes preparing a substrate on which the porous dielectric layer including an opening and pores exposed by the opening is formed, supplying a first precursor onto the substrate to form a first sub-sealing layer sealing the exposed pores, and supplying a second precursor onto the first sub-sealing layer to form a second sub-sealing layer covering the first sub-sealing layer. Each of the first and second precursors includes silicon, and a molecular weight of the second precursor is smaller than that of the first precursor.