Abstract:
An organic light emitting device includes an anode, the anode including a conductive polymer, a fluorine-containing organic material, and metal nanoparticles, a cathode facing the anode, and an emission layer between the anode and the cathode.
Abstract:
Provided are a metal halide perovskite light emitting device and a method of manufacturing the same. The metal halide perovskite light emitting device includes a substrate, a first electrode formed on the substrate, a light emitting layer formed on the first electrode and including a metal halide perovskite material, and a second electrode disposed on the light emitting layer, the first electrode includes a conductive layer and a surface energy-tuning layer disposed on the conductive layer, the conductive layer includes a conductive polymer and a first fluorine-based material, and the surface energy-tuning layer includes a second fluorine-based material but does not include the conductive polymer. Therefore, the first electrode can come in ohmic contact with a metal halide perovskite light emitting layer by adjusting a work function, and can prevent the dissociation of excitons to enhance luminous efficiency, thereby effectively improving efficiency of a light emitting device.
Abstract:
Disclosed is a largescale nanofiber electrode array using aligned metal nanofiber, which includes preparing a metal precursor/organic polymer complex solution, forming an aligned metal/polymer complex nanofiber pattern with a continuously connected shape on a substrate to by injecting the solution with an electric field aided robotic nozzle printer and moving the substrate, and performing thermal treatment on the complex nanofiber pattern to form an aligned nanofiber metal pattern. Accordingly, the position and direction of the metal nanofiber pattern can be accurately controlled, and the metal nanofiber pattern can be aligned in a desired direction.
Abstract:
An electronic element is provided. The electronic element may include a hybrid electrode having a high work function and conductivity which has a conductivity of at least 1 S/cm and includes: a work function-tuning layer; and a conductivity-tuning layer which is in contact with the first surface of the work function-tuning layer. Accordingly, the electronic element which employs the hybrid electrode having a high work function and conductivity may have excellent light-emitting efficiency and/or photoelectric conversion efficiency even if a hole injection layer for work function adjustment is omitted.
Abstract:
Provided are a perovskite light emitting device containing an exciton buffer layer, and a method for manufacturing the same. The light emitting device of the present invention comprises: an exciton buffer layer in which a first electrode, a conductive layer disposed on the first electrode and comprising a conductive material, and a surface buffer layer containing fluorine-based material having lower surface energy than the conductive material are sequentially deposited; a light-emitting layer disposed on the exciton buffer layer and containing a perovskite light-emitter; and a second electrode disposed on the light-emitting layer. Accordingly, a perovskite is formed with a combined FCC and BSS crystal structure in a nanoparticle light-emitter. The present invention can also form a lamellar or layered structure in which an organic plane and an inorganic plane are alternatively deposited; and an exciton can be bound by the inorganic plane, thereby being capable of expressing high color purity.
Abstract:
Provided are an organic-inorganic-hybrid perovskite nanocrystal particle light-emitter having a two-dimensional structure, a method for producing the same, and a light emitting device using the same. The organic-inorganic-hybrid perovskite nanocrystal particle light-emitter having a two-dimensional structure comprises an organic-inorganic-hybrid perovskite nanocrystal structure having a two-dimensional structure which can be dispersed in an organic solvent. Accordingly, the nanocrystal particle light-emitter comprises an organic-inorganic-hybrid perovskite nanocrystal having a crystal structure combining FCC and BCC; forms a lamellar structure where organic planes and inorganic planes are accumulated in an alternating manner; and can exhibit high color purity by confining excitons in the inorganic planes. In addition, since the exciton diffusion distance decreases and exciton binding energy increases, it is possible to prevent exciton annihilation caused by thermal ionization and delocalization of charge carriers, such that the nanocrystal particle light-emitter can have high luminescence efficiency at room temperature.
Abstract:
An organic light emitting diode comprises: a first electrode; an electronic injection layer disposed on the first electrode and containing a metallic oxide; an electronic injection interface layer disposed on the electronic injection layer and including a polymer containing a nitrogen atom; a light emitting layer disposed on the electronic injection interface layer; and a second electrode disposed on the light emitting layer. Accordingly, the electronic injection interface layer is formed between the electronic injection layer and the light emitting layer, so that an element efficiency can be improved, and as the thickness of the electronic injection interface layer becomes thicker, the work function of the electronic injection layer below the electronic injection interface layer increases, and an efficiency of injection of an electron to the light emitting layer is lowered.
Abstract:
A method for forming an aligned oxide semiconductor wire pattern includes: dissolving an oxide semiconductor precursor and an organic polymer in distilled water or an organic solvent to provide a composite solution of an oxide semiconductor precursor/organic polymer; continuously discharging the composite solution of the oxide semiconductor precursor/organic polymer in a vertical upper direction from a substrate to align an oxide semiconductor precursor/organic polymer composite wire on the substrate; and heating the oxide semiconductor precursor/organic polymer composite wire to remove the organic polymer and converting the oxide semiconductor precursor into an oxide semiconductor to form an aligned oxide semiconductor wire pattern.
Abstract:
Provided are perovskite nanocrystalline particle and an optoelectronic device using the same. The perovskite nanocrystalline particle may include a perovskite nanocrystalline structure while being dispersible in an organic solvent. Accordingly, the perovskite nanocrystalline particle in accordance with the present invention has therein a perovskite nanocrystal having a crystalline structure in which FCC and BCC are combined; forms a lamellar structure in which an organic plane and an inorganic plane are alternately stacked; and can show high color purity since excitons are confined to the inorganic plane. In addition, the perovskite nanocrystalline particle have a particle size greater than or equal to a Bohr diameter beyond a quantum confinement effect, and simultaneously can implement high emission efficiency and emission wavelength which is almost not dependent on particle size. Furthermore, the perovskite nanocrystalline particle in accordance with the present invention, as a nanoparticle which is dispersible in an organic solvent, is applicable in various electronic devices such as light emitting devices, lasers, solar cells, etc.
Abstract:
Provided are: a light-emitting layer for a perovskite light-emitting device; a method for manufacturing the same; and a perovskite light-emitting device using the same. The method of the present invention for manufacturing a light-emitting layer for an organic and inorganic hybrid perovskite light-emitting device comprises a step of forming a first nanoparticle thin film by coating, on a member for coating a light-emitting layer, a solution comprising organic and inorganic perovskite nanoparticles including an organic and inorganic perovskite nanocrystalline structure. Thereby, a nanoparticle light emitter has therein an organic and inorganic hybrid perovskite having a crystalline structure in which FCC and BCC are combined; forms a lamella structure in which an organic plane and an inorganic plane are alternatively stacked; and can show high color purity since excitons are confined to the inorganic plane. In addition, it is possible to improve the luminescence efficiency and luminance of a device by making perovskite as nanoparticles and then introducing the same into a light-emitting layer.