Abstract:
A solvent-free and ligand-free ball milling method for preparation of cesium lead tribromide (CsPbBr3) quantum dot is provided. First, mixing a Cs source, a Pb source, and a Br source as per a molar ratio of Cs source:Pb source:Br source is 1:1˜6:1˜9, and then adding polymethyl methacrylate (PMMA) to obtain a mixture. The mixture is milled for 1-2 hours at a rotation speed in a range of 360˜630 revolutions per minute (r/min) in a ball milling device, obtaining CsPbBr3 quantum dot. The method has advantages such as simple process, easy industrial production, no solvent, no organic ligand, low cost, and environmental protection. A quantum yield of product obtained by the method is up to 78%, and the product has a strong environmental stability. A preparation temperature of the product is low, and the reaction can be completed at a room temperature without a high temperature treatment.
Abstract:
An A/M/X crystalline material, a photovoltaic device, and preparation methods thereof are provided. The photovoltaic device includes a photoactive crystalline material layer. The photoactive crystalline material layer includes a penetrating crystal, where the penetrating crystal is a crystal penetrating through the photoactive crystalline material layer, and a percentage p of a quantity of penetrating crystals in a total quantity of crystals of the photoactive crystalline material layer is ≥80%. The photoactive crystalline material layer includes a backlight side and a backlight crystal, where the backlight crystal is a crystal exposed to the backlight side and has a backlight crystal face exposed to the backlight side. At least one region of the backlight side has an average flatness index Ravg being ≤75.
Abstract:
The present disclosure pertains to a color filter for a display device, which has at least one color filter element for generating a predefined color in response to incident light, wherein the at least one color filter element includes a Perovskite material.
Abstract:
A fluorescent material includes at least one fluorescent compound having a structure formula of ABXZY3-Z as defined in the specification, a plurality of NH3+ group-containing ions bound to the fluorescent compound through protonation of amine groups of an amine composition, and a plurality of COO− group-containing ions bound to the fluorescent compound through deprotonation of carboxyl groups of an acid composition. The amine composition has a total hydrogen bonding Hansen solubility parameter (TδH) ranges from 2.4 to 3.3 (cal/cm3)1/2, and the acid composition has a total polar Hansen solubility parameter (TδP) which is less than 1.4 (cal/cm3)1/2.
Abstract:
The present invention relates to the field of luminescent crystals (LCs), and more specifically to Quantum Dots (QDs) of formula M1aM2bXc, wherein the substituents are as defined in the specification. The invention provides methods of manufacturing such luminescent crystals, particularly by dispersing suitable starting materials in the presence of a liquid and by the aid of milling balls; to compositions comprising luminescent crystals and to electronic devices, decorative coatings; and to intermediates comprising luminescent crystals.
Abstract:
An oxychloride infrared nonlinear optical crystal and the preparation method and use thereof, the optical crystal has a general chemical formula of Pb2+xOCl2+2x, therein 0
Abstract:
The invention relates to a method for producing a one-part, multinary metal oxide power which is suitable for producing high-temperature superconductors. To this end, a mixture of the corresponding metal salts and/or metal oxides and/or metals in the requisite stoichiometric ratio is introduced into a pulsed reactor with a pulsed gas flow resulting from flameless combustion and is partially or completely converted into the multinary metal oxide.
Abstract:
A method of producing perovskite nanocrystalline particles using a liquid crystal includes a first operation for preparing a mixed solution including a first precursor compound, a second precursor compound, and a first solvent. a second operation for preparing a precursor solution by adding an organic ligand to the prepared mixed solution, a third operation for performing crystallization treatment after adding the prepared precursor solution to a reactor containing a liquid crystal, and a fourth operation for separating the perovskite nanocrystalline particles from the crystallized solution through a centrifugal separator.
Abstract:
A method for producing a photoresponsive nanoparticle. The method includes a first step of continuously transporting a first raw material liquid containing a lead halide and a second raw material liquid containing a fatty acid cesium to a heated mixer through a transport path, and a second step of mixing the first raw material liquid and the second raw material liquid.