Abstract:
Provided are: a light-emitting layer for a perovskite light-emitting device; a method for manufacturing the same; and a perovskite light-emitting device using the same. The method of the present invention for manufacturing a light-emitting layer for an organic and inorganic hybrid perovskite light-emitting device comprises a step of forming a first nanoparticle thin film by coating, on a member for coating a light-emitting layer, a solution comprising organic and inorganic perovskite nanoparticles including an organic and inorganic perovskite nanocrystalline structure. Thereby, a nanoparticle light emitter has therein an organic and inorganic hybrid perovskite having a crystalline structure in which FCC and BCC are combined; forms a lamella structure in which an organic plane and an inorganic plane are alternatively stacked; and can show high color purity since excitons are confined to the inorganic plane. In addition, it is possible to improve the luminescence efficiency and luminance of a device by making perovskite as nanoparticles and then introducing the same into a light-emitting layer.
Abstract:
Provided are a method for manufacturing a perovskite nanocrystal particle light-emitter where an organic ligand is substituted, a light-emitter manufactured thereby, and a light emitting device using the same. A method for manufacturing an organic-inorganic-hybrid perovskite nanocrystal particle light-emitter where an organic ligand is substituted may comprise the steps of: preparing a solution including an organic-inorganic-hybrid perovskite nanocrystal particle light-emitter, wherein the organic-inorganic-hybrid perovskite nanocrystal particle light-emitter comprises an organic-inorganic-hybrid perovskite nanocrystal structure and a plurality of first organic ligands surrounding the organic-inorganic-hybrid perovskite nanocrystal structure; and adding, to the solution, a second organic ligand which is shorter than the first organic ligands or includes a phenyl group or a fluorine group, thereby substitutes the first organic ligands with the second organic ligand. Thus, since energy transfer or charge injection into the nanocrystal structure increases through ligand substitution, it is possible to further increase light emitting efficiency and increase durability and stability by means of a hydrophobic ligand.
Abstract:
Provided are: a light-emitting layer for a perovskite light-emitting device; a method for manufacturing the same; and a perovskite light-emitting device using the same. The method of the present invention for manufacturing a light-emitting layer for an organic and inorganic hybrid perovskite light-emitting device comprises a step of forming a first nanoparticle thin film by coating, on a member for coating a light-emitting layer, a solution comprising organic and inorganic perovskite nanoparticles including an organic and inorganic perovskite nanocrystalline structure. Thereby, a nanoparticle light emitter has therein an organic and inorganic hybrid perovskite having a crystalline structure in which FCC and BCC are combined; forms a lamella structure in which an organic plane and an inorganic plane are alternatively stacked; and can show high color purity since excitons are confined to the inorganic plane. In addition, it is possible to improve the luminescence efficiency and luminance of a device by making perovskite as nanoparticles and then introducing the same into a light-emitting layer.
Abstract:
Provided are an organic-inorganic-hybrid perovskite nanocrystal particle light-emitter having a two-dimensional structure, a method for producing the same, and a light emitting device using the same. The organic-inorganic-hybrid perovskite nanocrystal particle light-emitter having a two-dimensional structure comprises an organic-inorganic-hybrid perovskite nanocrystal structure having a two-dimensional structure which can be dispersed in an organic solvent. Accordingly, the nanocrystal particle light-emitter comprises an organic-inorganic-hybrid perovskite nanocrystal having a crystal structure combining FCC and BCC; forms a lamellar structure where organic planes and inorganic planes are accumulated in an alternating manner; and can exhibit high color purity by confining excitons in the inorganic planes. In addition, since the exciton diffusion distance decreases and exciton binding energy increases, it is possible to prevent exciton annihilation caused by thermal ionization and delocalization of charge carriers, such that the nanocrystal particle light-emitter can have high luminescence efficiency at room temperature.
Abstract:
An organic light emitting diode comprises: a first electrode; an electronic injection layer disposed on the first electrode and containing a metallic oxide; an electronic injection interface layer disposed on the electronic injection layer and including a polymer containing a nitrogen atom; a light emitting layer disposed on the electronic injection interface layer; and a second electrode disposed on the light emitting layer. Accordingly, the electronic injection interface layer is formed between the electronic injection layer and the light emitting layer, so that an element efficiency can be improved, and as the thickness of the electronic injection interface layer becomes thicker, the work function of the electronic injection layer below the electronic injection interface layer increases, and an efficiency of injection of an electron to the light emitting layer is lowered.
Abstract:
Provided are perovskite nanocrystalline particle and an optoelectronic device using the same. The perovskite nanocrystalline particle may include a perovskite nanocrystalline structure while being dispersible in an organic solvent. Accordingly, the perovskite nanocrystalline particle in accordance with the present invention has therein a perovskite nanocrystal having a crystalline structure in which FCC and BCC are combined; forms a lamellar structure in which an organic plane and an inorganic plane are alternately stacked; and can show high color purity since excitons are confined to the inorganic plane. In addition, the perovskite nanocrystalline particle have a particle size greater than or equal to a Bohr diameter beyond a quantum confinement effect, and simultaneously can implement high emission efficiency and emission wavelength which is almost not dependent on particle size. Furthermore, the perovskite nanocrystalline particle in accordance with the present invention, as a nanoparticle which is dispersible in an organic solvent, is applicable in various electronic devices such as light emitting devices, lasers, solar cells, etc.