摘要:
A method for making an integrated circuit substrate having laminated laser-embedded circuit layers provides a multi-layer high-density mounting and interconnect structure for integrated circuits. A prepared substrate, which may be a rigid double-sided dielectric or film dielectric with conductive patterns plated, etched or printed on one or both sides is laminated with a thin-film dielectric on one or both sides. The thin-film is laser-ablated to form channels and via apertures and conductive material is plated or paste screened into the channels and apertures, forming a conductive interconnect pattern that is isolated by the channel sides and vias through to the conductive patterns on the prepared substrate. An integrated circuit die and external terminals can then be attached to the substrate, providing an integrated circuit having a high-density interconnect.
摘要:
A first patterned etch stop layer and a first patterned conductor layer are laminated by a dielectric material to a second patterned etch stop layer and a second patterned conductor layer. As the etch stop metal of the first and second patterned etch stop layers is selectively etchable compared to a conductor metal of the first and second patterned conductor layers, the first and second patterned etch stop layers provide an etch stop for substrate formation etch processes. In this manner, etching of the first and second patterned conductor layers is avoided insuring that impedance is controlled to within tight tolerance.
摘要:
A semiconductor package and substrate having multi-level plated vias provide a high density blind via solution at low incremental cost. Via are half-plated atop a circuit pattern and then a second via half is added to complete the via after isolation of elements of the circuit pattern. Successive resist pattern applications and etching are used to form a via tier atop a circuit pattern that is connected by a thin plane of metal. After the tier is deposited, the thin metal plane is etched to isolate the circuit pattern elements. Dielectric is then deposited and the top half of the via is deposited over the tier. The tier may have a larger or smaller diameter with respect to the other half of the via, so that the via halves may be properly registered. Tin plating may also be used to control the etching process to provide etching control.
摘要:
A die-attach method and assembly using film and epoxy bonds speeds manufacturing for large die assemblies while providing improved bond characteristics. An adhesive film defining an epoxy flow mask is attached to the die or substrate, epoxy is dispensed within the epoxy flow mask area and the die is then bonded to the substrate. The film controls the flow of the epoxy, preventing spillover. Additionally, the epoxy area can be made small with respect to the die size, reducing the time required to dispense the epoxy and reducing the amount of epoxy material required.
摘要:
In accordance with one embodiment, a method of forming a protruding post substrate package includes applying a dielectric layer to a carrier. Via apertures are formed in the dielectric layer. Carrier cavities are formed in the carrier using the dielectric layer as a mask. The carrier cavities are lined with a first metal, the first metal being selectively etchable compared to the carrier. After encapsulation of an electronic component with an encapsulant, the carrier is removed such that protruding posts including the first metal protrude outward from a first surface of the dielectric layer.
摘要:
A method includes forming a patterned sacrificial layer on a first carrier and a patterned trace layer on the patterned sacrificial layer. The patterned sacrificial layer and the patterned trace layer are laminated to a dielectric material. The first carrier and the patterned sacrificial layer are removed creating sacrificial layer gaps above the patterned trace layer. The sacrificial layer gaps are filled with a trace layer isolation dielectric material. Shield trenches are laser-ablated within the dielectric material and on opposite sides of a signal trace of the patterned trace layer. The shield trenches are filled with an electrically conductive material to form shield walls. The electrically conductive material is patterned to form a shield top. The shield top, the shield walls, and a second carrier form a bias shield around the signal trace.
摘要:
A method of forming a wafer level package includes attaching a laser-activated dielectric material to an integrated circuit substrate to form an assembly, the integrated circuit substrate including a plurality of electronic components having terminals on first surfaces thereof. The laser-activated dielectric material is laser activated and ablated with a laser to form laser-ablated artifacts in the laser-activated dielectric material and simultaneously to form an electrically conductive laser-activated layer lining the laser-ablated artifacts. The laser-ablated artifacts are filled using an electroless plating process in which an electrically conductive filler material is selectively plated on the laser-activated layer to form an embedded circuit pattern within the laser-activated dielectric material.
摘要:
An integrated circuit substrate having embedded lands with etching and plating control features provides improved manufacture of a high-density and low cost mounting and interconnect structure for integrated circuits. The integrated circuit substrate is formed by generating channels in a dielectric material, adding conductive material to fill the channels and then planarizing the conductive material, so that conductors are formed beneath the surface of the dielectric material. Lands are formed with feature shapes that reduce a dimpling effect at etching and/or an over-deposit of material during plating, both due to increased current density at the relatively larger land areas. Feature shapes may be a grid formed with line sizes similar to those employed to form conductive interconnects, so that all features on the substrate have essentially the same line width. Alternatively, and in particular for circular pads such as solderball attach lands, sub-features may be radially disposed around a central circular area and connected with channels formed as interconnect lines that connect the sub-features to the central circular area. Connection of the lands may be made using vias or by other conductive channels forming electrical interconnect lines.
摘要:
A method for making an integrated circuit substrate having embedded back-side access conductors and vias provides a high-density mounting and interconnect structure for integrated circuits that is compatible with etched, plated or printed pre-manufactured substrate components. A circuit board or film having a pre-plated, etched or printed circuit, for example a rigid substrate having a Ball Grid Array (BGA) ball-attach pattern, is laser perforated to produce blind vias and/or conductive patterns that provide contact through to conductors of the prefabricated circuit board or film. Existing circuit board and substrate technology is thereby made compatible with laser-embedding technologies, providing the low-cost advantages of existing etching, plating and printing technologies along with a high conductor density associated with laser-embedded circuit technologies.
摘要:
An integrated circuit substrate having laser-exposed terminals provides a high-density and low cost mounting and interconnect structure for integrated circuits. The laser-exposed terminals can further provide a selective plating feature by using a dielectric layer of the substrate to prevent plating terminal conductors and subsequently exposing the terminals via laser ablation. A metal layer may be coated on one or both sides with a dielectric material, conductive material embedded within the dielectric to form conductive interconnects and then coating over the conductive material with a conformal protective coating. The protectant is then laser-ablated to expose the terminals. A dielectric film having a metal layer laminated on one side may be etched and plated. Terminals are then laser-exposed from the back side of the metal layer exposing unplated terminals.