Abstract:
Varying energy barriers of magnetic tunnel junctions (MTJs) in different magneto-resistive random access memory (MRAM) arrays in a semiconductor die to facilitate use of MRAM for different memory applications is disclosed. In one aspect, energy barriers of MTJs in different MRAM arrays are varied. The energy barrier of an MTJ affects its write performance as the amount of switching current required to switch the magnetic orientation of a free layer of the MTJ is a function of its energy barrier. Thus, by varying the energy barriers of the MTJs in different MRAM arrays in a semiconductor die, different MRAM arrays may be used for different types of memory provided in the semiconductor die while still achieving distinct performance specifications. The energy barrier of an MTJ can be varied by varying the materials, heights, widths, and/or other characteristics of MTJ stacks.
Abstract:
Dynamically controlling voltage for access operations to magneto-resistive random access memory (MRAM) bit cells to account for ambient temperature is disclosed. An MRAM bit cell process variation measurement circuit (PVMC) is configured to measure process variations and ambient temperature in magnetic tunnel junctions (MTJs) that affect MTJ resistance, which can change the write current at a given fixed supply voltage applied to an MRAM bit cell. These measured process variations and ambient temperature are used to dynamically control a supply voltage for access operations to the MRAM to reduce the likelihood of bit errors and reduce power consumption. The MRAM bit cell PVMC may also be configured to measure process variations and/or ambient temperatures in logic circuits that represent the process variations and ambient temperatures in access transistors employed in MRAM bit cells in the MRAM to determine variations in the switching speed (i.e., drive strength) of the access transistors.
Abstract:
Magnetoresistive (MR) sensors employing dual MR devices for differential MR sensing are provided. These MR sensors may be used as biosensors to detect the presence of biological materials as an example. An MR sensor includes dual MR sensor devices that may be tunnel magnetoresistive (TMR) devices or giant magnetoresistive (GMR) devices as examples. The MR devices are arranged such that a channel is formed between the MR devices for receiving magnetic nanoparticles. A magnetic stray field generated by the magnetic nanoparticles causes free layers in the MR devices to rotate in opposite directions, thus causing differential resistances between the MR devices for greater sensing sensitivity. Further, as another aspect, by providing the channel between the MR devices, the magnetic stray field generated by the magnetic nanoparticles can more easily rotate the magnetic moment orientation of the free layers in the MR devices, thus further increasing sensitivity.
Abstract:
Shadow-effect compensated fabrication of magnetic tunnel junction (MTJ) semiconductor elements is disclosed. Providing shadow-effect compensated fabrication of MTJ elements can provide reduced free layer sizing for enhanced MTJ operational margin. In certain aspects, to reduce size of a free layer during fabrication of an MTJ to provide enhanced write and retention symmetry, ion beam etching (IBE) fabrication process is employed to fabricate a free layer smaller than the pinned layer. To avoid asymmetrical footing being fabricated in free layer due to shadow-effect of neighboring MTJs, an ion beam directed at the MTJ is shadow-effect compensated. The angle of incidence of the ion beam directed at the MTJ is varied as the MTJ is rotated to be less steep when another MTJ is in directional line of the ion beam and the MTJ being fabricated. Thus, the free layer is etched more uniformly in the MTJ while avoiding increased etching damage.
Abstract:
Material surrounding a magnetic tunnel junction (MTJ) device region of a multi-layer starting structure is etched, forming an MTJ device pillar having an MTJ layer with a chemically damaged peripheral edge region. De-nitridation or de-oxidation, or both, restore the chemically damaged peripheral region to form an edge-restored MTJ layer. An MTJ edge restoration assist layer is formed on the edge-restored MTJ layer. An MTJ-edge-protect layer is formed on the insulating MTJ-edge-restoration-assist layer.
Abstract:
A perpendicular magnetic tunnel junction (MTJ) apparatus includes a tunnel magnetoresistance (TMR) enhancement buffer layer deposited between the tunnel barrier layer and the reference layers An amorphous alloy spacer is deposited between the TMR enhancement buffer layer and the reference layers to enhance TMR The amorphous alloy spacer blocks template effects of face centered cubic (fcc) oriented pinned layers and provides strong coupling between the pinned layers and the TMR enhancement buffer layer to ensure full perpendicular magnetization.
Abstract:
A passive on glass (POG) on filter capping apparatus may include an acoustic filter die. The apparatus may further include a capping die electrically coupled to the acoustic filter die. The capping die may include a 3D inductor.
Abstract:
Tunnel magneto-resistive (TMR) sensors employing TMR devices with different magnetic field sensitivities for increased detection sensitivity are disclosed. For example, a TMR sensor may be used as a biosensor to detect the presence of biological materials. In aspects disclosed herein, free layers of at least two TMR devices in a TMR sensor are fabricated to exhibit different magnetic properties from each other (e.g., MR ratio, magnetic anisotropy, coercivity) so that each TMR device will exhibit a different change in resistance to a given magnetic stray field for increased magnetic field detection sensitivity. For example, the TMR devices may be fabricated to exhibit different magnetic properties such that one TMR device exhibits a greater change in resistance in the presence of a smaller magnetic stray field, and another TMR device exhibits a greater change in resistance in the presence of a larger magnetic stray field.
Abstract:
Varying energy barriers of magnetic tunnel junctions (MTJs) in different magneto-resistive random access memory (MRAM) arrays in a semiconductor die to facilitate use of MRAM for different memory applications is disclosed. In one aspect, energy barriers of MTJs in different MRAM arrays are varied. The energy barrier of an MTJ affects its write performance as the amount of switching current required to switch the magnetic orientation of a free layer of the MTJ is a function of its energy barrier. Thus, by varying the energy barriers of the MTJs in different MRAM arrays in a semiconductor die, different MRAM arrays may be used for different types of memory provided in the semiconductor die while still achieving distinct performance specifications. The energy barrier of an MTJ can be varied by varying the materials, heights, widths, and/or other characteristics of MTJ stacks.
Abstract:
Multiple (multi-) level cell (MLC) non-volatile (NV) memory (NVM) matrix circuits for performing matrix computations with multi-bit input vectors are disclosed. An MLC NVM matrix circuit includes a plurality of NVM storage string circuits that each include a plurality of MLC NVM storage circuits each containing a plurality of NVM bit cell circuits each configured to store 1-bit memory state. Thus, each MLC NVM storage circuit stores a multi-bit memory state according to memory states of its respective NVM bit cell circuits. Each NVM bit cell circuit includes a transistor whose gate node is coupled to a word line among a plurality of word lines configured to receive an input vector. Activation of the gate node of a given NVM bit cell circuit in an MLC NVM storage circuit controls whether its resistance is contributed to total resistance of an MLC NVM storage circuit coupled to a respective source line.