Abstract:
A method for fabricating a flash memory is described. A stacked gate structure and a source/drain are formed on a substrate. An inter-layer dielectrics and a plurality of inter-metal dielectric layers are then formed over the substrate, wherein at least one layer among the inter-layer dielectrics and the inter-metal dielectric layers has a silicon carbide layer formed thereon. The silicon carbide layer is formed to protect the memory device from an UV irradiation, so as to prevent data errors occurring in the memory device.
Abstract:
A method for manufacturing dielectric layers between metal parts by forming fluorine silicate glass by high density plasma deposition using radio frequency power of low bias voltage. The method includes filling in a gap with fluorine silicate glass by high density plasma deposition with slower rate of deposition and radio frequency power of high bias voltage, and then using fluorine silicate glass deposited with fast rate of deposition and radio frequency power of no or low bias voltage as a sacrificial layer, and being made plane by a chemical-mechanic polishing CMP.
Abstract:
A method of making an integrated circuit includes providing a semiconductor substrate and forming a gate dielectric over the substrate, such as a high-k dielectric. A metal gate structure is formed over the semiconductor substrate and the gate dielectric and a thin dielectric film is formed over that. The thin dielectric film includes oxynitride combined with metal from the metal gate. The method further includes providing an interlayer dielectric (ILD) on either side of the metal gate structure.
Abstract:
An interlayer interconnect structure of a three-dimensional memory includes memory cell groups, each composed of a plurality of memory cells and connected to their respective selection transistors, because of special arrangement of lines and first plugs as well as line layouts. The line layouts involve disposing a plurality of lines on each of a plurality of horizontal levels, and selectively forming second plugs between adjoining lines disposed on upper and lower horizontal levels, such that the plugs selectively connect the adjoining upper and lower lines to each other. Since identical layout patterns are adopted in individual stacking states of stacking layers disposed in the three-dimensional memory, the upper lines and the lower lines of the stacking layers of the three-dimensional memory share the same layouts, leading to a reduction in the number of masks used, simpler process adjustment, and lower costs.
Abstract:
A nanocrystal memory element and a method for fabricating the same involves repeatedly and alternately depositing, by atomic layer deposition, conductive layers and dielectric layers on a substrate with a tunnel oxide layer formed thereon, forming multiple layers of nanocrystal groups as a result of crystallization of conductive layers in a rapid thermal annealing process, and forming a gate on the top dielectric layer. The nanocrystal groups disposed at any two neighboring levels are separated by one dielectric layer, thus a plurality of nanocrystals formed in an integration layer are disposed at the same level. Barrier widths between a channel and the nanocrystals of the nanocrystal groups disposed at the same level are equal. Therefore, the nanocrystals at the same level are subjected the same electric field when voltage is applied to the gate, resulting in improved transistor performance, enhanced control of threshold voltage, and avoidance of over-erasing.
Abstract:
A method of improving flash memory performance. The method includes: providing a substrate having a gate structure thereon, the gate structure having a gate dielectric layer, a first polysilicon layer, an interploy dielectric layer, and a second polysilicon layer; then, depositing an gate insulating layer to enclose the gate structure, for forming side wall spacers; next, performing a first anneal on the substrate and the enclosed gate structure; then, performing a cell reoxidation on the substrate and the enclosed gate structure by dilute oxidation process using mixed gas comprising oxygen O2 and nitrogen N2. The invention reduces encroachment issues in the interpoly dielectric layer and the tunnel oxide and improves gate coupling ratio (GCR).
Abstract:
A method of forming self-aligned contacts that includes providing at least one stacked-gate structure on a semiconductor substrate, forming a first dielectric layer on the stacked-gate structure and the semiconductor substrate, forming a second dielectric layer on the first dielectric layer, the second dielectric layer being etch selective relative to the first dielectric layer, etching the second dielectric layer to expose a portion of the first dielectric layer formed on a top surface and along at least a portion of upper sidewalls of the stacked-gate structure, removing the exposed portion of the first dielectric layer, and forming a third dielectric layer on the sidewalls of the stacked-gate structure.
Abstract:
At least two neighboring metal lines are formed on a semiconductor substrate first, followed by the formation of a PE oxide layer on the semiconductor substrate, that uniformly covers the surface of the two neighboring metal lines and the gap between the two neighboring metal lines. A SOD layer on the PE oxide layer is created to fill the gap. Then the semiconductor substrate is directly heated by utilizing at least one hot plate fixed at a first predetermined temperature so as to expel the solvent out of the SOD layer. Finally, the semiconductor wafer is directly heated by utilizing a second hot plate fixed at a second predetermined temperature so as to cure the SOD layer for a predetermined time.
Abstract:
A method for forming a high-RI dielectric liner layer to prevent out diffusion of fluorine substances in an intermetal dielectric (IMD) layer of an semiconductor device is provided. The method comprises following steps. First, a patterned conductive layer is deposited on a substrate. Then, a dielectric liner layer is formed by high density plasma enhanced chemical vapor deposition method or plasma enhanced chemical vapor deposition method. The dielectric liner layer is silicon dioxide and has a high-RI between about 1.5 to 1.8. Next, a fluorinated silicate glass layer is deposited on the dielectric liner layer. The high-RI dielectric liner layer is used to reduce out diffusion of fluorine substances in the fluorinated silicate glass layer. Last, it is proceeded a chemical mechanism polishing process to remove additional fluorinated silicate glass layer and the dielectric liner layer.
Abstract:
A method for improving the electrical property of gate in polycide structure is disclosed. First, a gate oxide layer is formed on the surface of the silicon substrate. The following procedure acts as one of the key points for the invention comprising the process steps of (1) forming a highly-doped polysilicon layer on the gate oxide, (2) forming an undoped amorphous silicon layer on the polysilicon layer, and followed by (3) forming a tungsten silicon layer on the amorphous silicon. Next, annealing at high temperature and in short time is performed. Such a stacked gate structure has low resistance and can solve the following problems: (1)peeling of tungsten silicide after annealing, (2) degradation of the electrical property of gate due to the diffusing and penetration of fluorine atoms coming from tungsten silicide.