Abstract:
A nanocrystal memory element and a method for fabricating the same are proposed. The fabricating method involves selectively oxidizing polysilicon not disposed beneath and not covered with a plurality of metal nanocrystals, and leaving intact the polysilicon disposed beneath and thereby covered with the plurality of metal nanocrystals, with a view to forming double layered silicon-metal nanocrystals by self-alignment.
Abstract:
A nanocrystal memory element and a method for fabricating the same are proposed. The fabricating method involves selectively oxidizing polysilicon not disposed beneath and not covered with a plurality of metal nanocrystals, and leaving intact the polysilicon disposed beneath and thereby covered with the plurality of metal nanocrystals, with a view to forming double layered silicon-metal nanocrystals by self-alignment.
Abstract:
In a manufacturing method for a shallow trench isolation, first, a multi-layer structure is formed over a semiconductor substrate. A first trench is formed in the multi-layer structure to define an isolation region and an active region. Sidewalls in the first trench are formed by depositing sidewall material over the multi-layer structure and surfaces of the first trench and etching the sidewall material. An isolation trench is then formed in the substrate by etching the substrate using the sidewalls and the multi-layer structure as a mask. Then the sidewalls are etched back to expose a portion of the substrate surface. Thermal oxidation is performed to oxidize the second trench, wherein the etched sidewalls and the multi-layer structure protect the substrate underneath from being oxidized. Then, the oxidized second trench is filled with a filling material and the whole structure is polished. The amount by which the sidewalls are etched back controls a bird beak that is formed in the active region.
Abstract:
A selfaligned process for a flash memory comprises applying a solution with a high etch selectivity to etch the sidewall of the tungsten silicide in the gate structure of the flash memory during a clean process before forming a spacer for the gate structure. This process prevents the gate structure from degradation caused by thermal stress.
Abstract:
The present invention provides for an improvement of the interlayer adhesion property of the low-K layers in a dual damascene process. The method includes a shallow ion implantation process to bombard a bottom low-k layer for forming a densified layer on the bottom low-k layer. The densified layer can be a used as a substitute in the oxidation of the prior art to avoid the peeling phenomenon between the organic low-k layers.
Abstract:
The present invention provides a method of fabricating a flash memory. The method first involves forming a gate oxide layer on a silicon substrate of a semiconductor wafer. Then, a first polysilicon layer, and a silicon nitride layer are formed, respectively, on the gate oxide layer. A lithographic process is then used to pattern a first photoresist layer for defining a memory array area and a peripheral region. The first photoresist layer is then used to etch the silicon nitride layer down to the surface of the silicon substrate to form a wide gap at the boundary between the memory array area and the peripheral region, and a plurality of gaps in the memory array area. An HDP oxide layer is then deposited, followed by coating of a photoresist (PR) on the wafer to achieve cell planarization. Thereafter, an oxide etch back process is performed followed by stripping of both the PR coating and the silicon nitride layer. Finally, a floating gate and a control gate are formed, respectively.
Abstract:
The present invention discloses a planarization method of memory unit of a flash memory, wherein a patterned polysilicon layer and a silicon nitride layer are formed in turn on a semiconductor substrate. A silicon dioxide layer is then deposited by the HDPCVD technique. Next, a silicon nitride layer is deposited. Finally, the silicon nitride layer and the silicon dioxide layer thereon are simultaneously removed using hot phosphoric acid. Because the CMP technique is not used in the present invention, the problem of micro scratches will not arise. Therefore, the present invention can assure the requirement of high planarity of memory unit of the flash memory, simplify the process flow, increase the tolerance of the etching mask, and effectively enhance the function of memory unit.
Abstract:
A method for manufacturing dielectric layers between metal parts by forming fluorine silicate glass by high density plasma deposition using radio frequency power of low bias voltage. The method includes filling in a gap with fluorine silicate glass by high density plasma deposition with slower rate of deposition and radio frequency power of high bias voltage, and then using fluorine silicate glass deposited with fast rate of deposition and radio frequency power of no or low bias voltage as a sacrificial layer, and being made plane by a chemical-mechanic polishing CMP.
Abstract:
A method for forming a self-aligned mask read only memory by dual damascene trenches is disclosed. In the method, a thickness difference is formed between the gate area and periphery to be formed with a dual damascene trench so as to be formed with a condition of self-alignment of read only memory code. Thus, the manufacturing range in the lithography is enlarged, and an ion implantation process with self-aligned ability complete. Therefore, self-aligned read only memory codes and metal word lines are formed. The defect of disalignment in the read only memory code is resolved and the difficulty in the manufacturing process is reduced.
Abstract:
A method to planarize a flash memory device, wherein the method is applied on a substrate having a polysilicon layer and a cap layer sequentially formed thereon. Thereafter, the cap layer and the polysilicon layer are patterned to form the peripheral circuit region and the memory cell region. A dielectric layer is then formed on the substrate, covering the cap layer. A portion of the dielectric layer is further removed to expose a part of the cap layer, such that the dielectric layer above the cap layer and the dielectric layer on both sides of the cap layer become separated. A portion of the dielectric layer in the peripheral circuit region is then removed, followed by forming a photoresist layer on the substrate such that a portion of the dielectric layer in the peripheral circuit region and in the memory cell region is exposed. The dielectric layer exposed by the photoresist layer is then removed, followed by removing the photoresist layer. The cap layer is subsequently removed to complete the planazation of the flash memory device.