Abstract:
A sample shape measuring method includes a step of preparing illumination light passing through a predetermined illumination region, a step of applying the illumination light to a sample, and a predetermined processing step. The predetermined illumination region is set so as to include an optical axis at a pupil position of an illumination optical system. Light transmitted through the sample is incident on the observation optical system. The predetermined processing step includes a step of receiving light emerged from the observation optical system, a step of obtaining a quantity of light of the received light, a step of calculating a difference or a ratio between the quantity of light and a reference quantity of light, and a step of calculating an amount of tilt in a surface of the sample from the difference or the ratio.
Abstract:
A focusing method includes a step of preparing a microscope, a step of mounting a sample, and a predetermined processing step, the predetermined processing step includes a step of receiving light emitted from the observation optical system, a step of obtaining the quantity of light based on light from a predetermined region of the received light, a step of calculating a difference or a ratio between the quantity of light in the predetermined region and the quantity of light as a reference, a step of comparing a calculation result with a threshold, and a step of changing the distance between the sample and the observation optical system, and in the step of preparing, a partial region of illumination light is shielded or darkened, and when the result of the calculation is equal to or smaller than the threshold, the predetermined processing step is terminated.
Abstract:
A sample observation method includes an acquisition of for acquiring an electronic image of a sample, and a subtraction step of subtracting a DC component from a signal of the electronic image, and the acquisition step is performed in a state of bright-field observation, the electronic image at the subtraction step is an image acquired in a first predetermined state, and in the first predetermined state, at least a position of the sample and a in-focus position of an image forming optical system are different. A sample observation device includes a light source, an illumination optical system, an image forming optical system, an image-pickup device, and an image processing device, and the illumination optical system is disposed so as to irradiate a sample with illumination light from the light source, the image forming optical system is disposed so that light from the sample is incident thereon and an optical image of the sample is formed, the image-pickup device is disposed at a position of the optical image, and the image processing device is configured to implement the aforementioned sample observation method.
Abstract:
A sample observation apparatus includes a light source unit, an illumination optical system, a detection optical system, a light detection element, and an image processing apparatus. The scanning unit relatively moves the light spot and the sample. An optical member is disposed. The illumination optical system and the detection optical system are disposed such that an image of a pupil of the illumination optical system is formed at a pupil position of the detection optical system. The image of the pupil of the illumination optical system is decentered relative to a pupil of the detection optical system due to refraction caused by the sample. The illumination optical system, the detection optical system, and the optical member are configured such that quantity of light passing through the pupil of the detection optical system changes by decentering.
Abstract:
A sample shape measuring method includes a step of preparing illumination light that is to be passed through a predetermined illumination region, a step of irradiating the illumination light to a sample, and a predetermined processing step. The predetermined illumination region is set such that an area of a region of the illumination light passing through a pupil of an observation optical system is smaller than an area of the pupil of the observation optical system. The predetermined processing step includes a step of receiving light emerged from the observation optical system, a step of computing a position of an image of the predetermined illumination region from light received, a step of computing a difference between the position of the image of the predetermined illumination region and a reference position, and a step of calculating an amount of inclination at a surface of the sample, from the difference calculated.
Abstract:
A refractive index distribution estimating system includes an illumination optical system configured to illuminate a sample, an imaging optical system configured to form an optical sample image, an image sensor configured to capture optical images of the sample, and a processor configured to reconstruct a refractive index distribution of the sample from images. The processor performs processing including the steps of: estimating the sample; calculating the estimated sample image from a plurality of first wavefronts emanating from a plurality of modeled light sources; optimizing a refractive index distribution of the estimated sample from a plurality of second wavefronts after the first wavefronts pass through the estimated sample, the captured image, and the image of the estimated sample; updating the estimation sample by repeating calculation of the estimated sample image and optimization of the refractive index distribution of the estimated sample; and reconstructing and outputting a structure of the estimated sample.
Abstract:
A sample shape measuring apparatus includes a light source unit, an illumination optical system, a detection optical system, a light detection element, and a processing apparatus. A scanning unit relatively moves a light spot and the sample. Illumination light applied to the sample is transmitted through the sample, and light transmitted through the sample is incident on the detection optical system. The light detection element receives light. The illumination optical system or the detection optical system includes an optical member. The processing apparatus obtains a quantity of light based on a received light, calculates at least one of a difference and a ratio between the quantity of light and a reference quantity of light, calculates an amount of tilt at a surface of the sample, and calculates a shape of the sample from the amount of tilt.
Abstract:
A sample observation device includes an illumination optical system and an observation optical system, and the illumination optical system includes a light source, a condenser lens and an aperture member, and the observation optical system includes an objective lens and an imaging lens, and the aperture member has a light-shielding part or a darkening part and a transmission part, and the aperture member is disposed so that the light-shielding part or the darkening part includes an optical axis of the illumination optical system, and an image of an inner edge of the transmission part is formed inside of an outer edge of the pupil of the objective lens, and an image of an outer edge of the transmission part is formed outside of the outer edge of the pupil of the objective lens.
Abstract:
A data acquisition apparatus includes a light source, a first beam splitter, a predetermined beam splitter, a first light deflector, a second light deflector, a first measuring unit, a second measuring unit, a second beam splitter, and a photodetector. A second measurement optical path is positioned in a first direction and a reference optical path is positioned in a second direction. The predetermined beam splitter is disposed in the second measurement optical path or the reference optical path. A first measurement optical path is positioned between the predetermined beam splitter and the photodetector. The first light deflector and the first measuring unit are disposed in the first measurement optical path, and the second light deflector and the second measuring unit are disposed in the second measurement optical path. The first measurement optical path and the second measurement optical path intersect.
Abstract:
A sample shape measuring method includes a step of preparing illumination light passing through a predetermined illumination region, a step of applying the illumination light to a sample, and a predetermined processing step. The predetermined illumination region is set so as not to include the optical axis at a pupil position of the illumination optical system and is set such that the illumination light is applied to part of the inside of the pupil and the outside of the pupil at a pupil position of the observation optical system. The predetermined processing step includes a step of receiving light, a step of obtaining the quantity of light, a step of calculating the difference or the ratio between the quantity of light and a reference quantity of light, and a step of calculating the amount of tilt in the surface of the sample from the difference or the ratio.