摘要:
Provided is a light emitting device composite substrate suitable for manufacturing large-area light emitting devices at low cost. The light emitting device composite substrate comprises a substrate composed of an oriented polycrystalline alumina sintered body, and a light emitting functional layer formed on the substrate and having two or more layers composed of semiconductor single crystal grains, wherein each of the two or more layers has a single crystal structure in a direction approximately normal to the substrate.
摘要:
Provided is a zinc oxide-based sputtering target capable of improving the film formation rate while suppressing arcing in the formation of a zinc oxide-based transparent conductive film by sputtering. This zinc oxide-based sputtering target includes a zinc oxide-based sintered body mainly including zinc oxide crystal grains, and has a degree of (002) orientation of 50% or greater at a sputtering surface and a density of 5.30 g/cm3 or greater.
摘要翻译:提供一种氧化锌系溅射靶,其能够通过溅射在氧化锌系透明导电膜的形成中抑制电弧化而提高成膜速度。 该氧化锌系溅射靶包括主要包含氧化锌晶粒的氧化锌系烧结体,溅射面的(002)取向度为50%以上,密度为5.30g / cm 3以上 。
摘要:
Provided is a surface light-emitting device comprising a substrate composed of an oriented polycrystalline zinc oxide sintered body in a plate shape, a light emitting functional layer provided on the substrate, and an electrode provided on the light emitting functional layer. According to the present invention, a surface light-emitting device having high luminous efficiency can be inexpensively provided.
摘要:
A crystal production method according to the present invention includes a film formation and crystallization step of spraying a raw material powder containing a raw material component to form a film containing the raw material component on a seed substrate containing a single crystal at a predetermined single crystallization temperature at which single crystallization of the raw material component occurs, and crystallizing the film containing the raw material while maintaining the single crystallization temperature. In the film formation and crystallization step, preferably, the single crystallization temperature is 900° C. or higher. Furthermore, in the film formation and crystallization step, preferably, the raw material powder and the seed substrate are each a nitride or an oxide.
摘要:
A Group-III element nitride semiconductor substrate includes a first surface and a second surface. A minimum value of a specific resistance in the first surface is 1×107 Ω·cm or more, and the minimum value of the specific resistance in the first surface is 0.01 or more times as large as a maximum value of the specific resistance in the first surface.
摘要:
A sputtering target includes a gallium nitride-based crystalline body composed of a plurality of gallium nitride-based monocrystalline grains whose c-axes are orientated in a direction normal to a predetermined surface. The gallium nitride-based crystalline body has a total oxygen concentration of 150 mass ppm or lower, and the gallium nitride-based monocrystalline grains have oxygen concentrations of 2×1017 cm−3 or higher measured by dynamic SIMS method.
摘要:
It is provided a seed crystal layer, composed of a group 13 nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or the mixed crystals thereof, on an alumina layer on a single crystal substrate. By annealing under reducing atmosphere at a temperature of 950° C. or higher and 1200° C. or lower, convex-concave morphology is formed on a surface of the seed crystal layer so as to have an RMS value of 180 nm to 700 nm measured by an atomic force microscope. On the surface of the seed crystal layer, it is grown a group 13 nitride crystal layer composed of a group 13 nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or the mixed crystals thereof.
摘要:
A self-supporting substrate includes a first nitride layer grown by hydride vapor deposition method or ammonothermal method and comprising a nitride of one or more element selected from the group consisting of gallium, aluminum and indium; and a second nitride layer grown by a sodium flux method on the first nitride layer and comprising a nitride of one or more element selected from the group consisting of gallium, aluminum and indium. The first nitride layer includes a plurality of single crystal grains arranged therein and being extended between a pair of main faces of the first nitride layer. The second nitride layer includes a plurality of single crystal grains arranged therein and being extended between a pair of main faces of the second nitride layer. The first nitride layer has a thickness larger than a thickness of the second nitride layer.
摘要:
It is provided a seed crystal layer, composed of a group 13 nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or the mixed crystals thereof, on an alumina layer on a single crystal substrate. By annealing under reducing atmosphere at a temperature of 950° C. or higher and 1200° C. or lower, convex-concave morphology is formed on a surface of the seed crystal layer so as to have an RMS value of 180 nm to 700 nm measured by an atomic force microscope. On the surface of the seed crystal layer, it is grown a group 13 nitride crystal layer composed of a group 13 nitride crystal selected from gallium nitride, aluminum nitride, indium nitride or the mixed crystals thereof.
摘要:
An underlying substrate including a seed crystal layer of a group 13 nitride, wherein projections and recesses repeatedly appear in stripe shapes at a principal surface of the seed crystal layer, and the projections have a level difference of 0.3 to 40 μm and a width of 5 to 100 μm, and the recesses have a bottom thickness of 2 μm or more and a width of 50 to 500 μm.