Abstract:
According to one embodiment, a nonvolatile semiconductor memory device includes fin-type stacked layer structures. Each of the structures includes semiconductor layers stacked in a perpendicular direction. Assist gate electrodes are disposed in an in-plane direction and divided on a surface in the perpendicular direction of the structures.
Abstract:
A first trench and a second trench having width wider than the first trench are simultaneously formed in a main surface area of a semiconductor substrate. The width of an opening portion of the first trench is made narrower by forming a first insulating film on the main surface of the semiconductor substrate and in the first and second trenches. A second insulating film is formed on the first insulating film by use of a high-density plasma-CVD method to form a void in the first trench while covering the opening portion of the first trench, and the second trench is filled with the second insulating film. Then, part of the second insulating film which covers the opening portion is removed by anisotropic etching and the void is filled with an insulating film having fluidity at the film formation time.
Abstract:
According to one embodiment, there are provided a first electrode, a second electrode, first and second variable-resistance layers that are arranged between the first electrode and the second electrode, and at least one non variable-resistance layer that is arranged so that positions of the first and second variable-resistance layers between the first electrode and the second electrode are symmetrical to each other.
Abstract:
A stacked film including a gate dielectric film and electrode film of each memory cell of a flash memory is formed on a semiconductor substrate. The stacked film is patterned by reactive ion etching to form an isolation trench for formation of an element isolation region and the surface of the semiconductor substrate is exposed to the internal portion of the isolation trench. An O3-TEOS film exhibiting underlying material selectivity during the deposition is formed in the isolation trench as the first filling dielectric film and then the isolation trench is filled with the second filling dielectric film to form an element isolation region of an STI structure.
Abstract:
In a nonvolatile semiconductor memory device which has a nonvolatile memory cell portion, a low-voltage operating circuit portion of a peripheral circuit region and a high-voltage operating circuit portion of the peripheral circuit region formed on a substrate and in which elements of the above portions are isolated from one another by filling insulating films, the upper surface of the filling insulating films in the high-voltage operating circuit portion lies above the surface of the substrate and the upper surface of at least part of the filling insulating films in the low-voltage operating circuit portion is pulled back to a portion lower than the surface of the substrate.
Abstract:
A flash memory includes a memory cell portion and peripheral circuit portion. The memory cell portion has first gate dielectric films formed on the main surface of a semiconductor substrate and floating gate electrode layers formed on the first gate dielectric films. The peripheral circuit portion has second gate dielectric films formed on the main surface of the semiconductor substrate and gate electrode layers formed on the second gate dielectric films. The penetration depth of a bird's beak formed in contact with the upper and bottom surfaces of the second gate dielectric film is larger than the penetration depth of a bird's beak formed in contact with the upper and bottom surfaces of the first gate dielectric film.
Abstract:
According to one embodiment, a semiconductor device includes first to n-th semiconductor layers (n is a natural number equal to or more than 2) being stacked in order from a surface of an insulating layer in a first direction perpendicular to the surface of the insulating layer, the first to n-th semiconductor layers extending in a second direction parallel to the surface of the insulating layer, the first to n-th semiconductor layers being insulated from each other, a common electrode connected to the first to n-th semiconductor layers in a first end of the second direction thereof, and a layer select transistor which uses the first to n-th semiconductor layers as channels and which selects one of the first to n-th semiconductor layers.
Abstract:
A nonvolatile semiconductor storage device includes: a plurality of stacked units juxtaposed on a major surface of a substrate, each stacked unit aligning in a first direction parallel to the major surface of the substrate; and a gate electrode aligning parallel to the major surface in a second direction non-parallel to the first direction. Each of the plurality of stacked units includes a plurality of stacked semiconductor layers via an insulating layer. The plurality of stacked units are juxtaposed so that the spacings between adjacent stacked units are alternately a first spacing and a second spacing larger than the first spacing. The second spacing is provided at a periodic interval four times a size of a half pitch F of the bit line. The gate electrode includes a protruding portion that enters into a gap of the second spacing between the stacked units. A first insulating film, a charge storage layer, and a second insulating film are provided between a side face of the semiconductor layer and the protruding portion.
Abstract:
According to one embodiment, a first trench extending in a first direction is formed in a stacked structure in which a plurality of spacer films and a plurality of channel semiconductor films are alternately stacked. A first space is formed by forming a recess in the channel semiconductor films from the first trench. A tunnel dielectric film is formed in the first space, and the first space is further filled with a floating gate electrode film. Second trenches that divide the stacked structure at predetermined interval in the first direction are formed so as to divide the floating gate electrode film between memory cells adjacent to each other in the first direction but not to divide the channel semiconductor films.
Abstract:
An apparatus for forming silicon oxide film is disclosed. The apparatus includes a spin coating unit, a carrying unit, and an oxidation unit. The spin coating unit forms a polymer film above a substrate by spin coating a solution including a polymer containing a silazane bond dissolved in an organic solvent. The carrying unit carries the substrate to the oxidation unit without contacting the polymer film. The oxidation unit, when receiving the substrate from the carrying unit, converts the polymer film into the silicon oxide film by either immersing the polymer film with a heated aqueous solution containing hydrogen peroxide, spraying the heated aqueous solution containing hydrogen peroxide over the polymer film, or exposing the polymer film to a reaction gas containing a hydrogen peroxide vapor. The apparatus, by itself, completes the polymer film formation and the polymer-to-silicon oxide film conversion within the apparatus itself.