摘要:
Techniques for improving reliability in Cu interconnects using Cu intermetallics are provided. In one aspect, a method of forming a Cu interconnect in a dielectric over a Cu line includes the steps of: forming at least one via in the dielectric over the Cu line; depositing a metal layer onto the dielectric and lining the via such that the metal layer is in contact with the Cu line at the bottom of the via, wherein the metal layer comprises at least one metal that can react with Cu to form a Cu intermetallic; annealing the metal layer and the Cu line under conditions sufficient to form a Cu intermetallic barrier at the bottom of the via; and plating Cu into the via to form the Cu interconnect, wherein the Cu interconnect is separated from the Cu line by the Cu intermetallic barrier. A device structure is also provided.
摘要:
Systems for reliability testing include a picometer configured to measure a leakage current across a device under test (DUT); a camera configured to measure optical emissions from the DUT based on a timing of the measurement of the leakage current; and a test system configured to apply a stress voltage to the DUT and to correlate the leakage current with the optical emissions using a processor to determine a time and location of a defect occurrence within the DUT by locating instances of increased noise in the leakage current that correspond in time with instances of increased optical emissions.
摘要:
Techniques for improving reliability in Cu interconnects using Cu intermetallics are provided. In one aspect, a method of forming a Cu interconnect in a dielectric over a Cu line includes the steps of: forming at least one via in the dielectric over the Cu line; depositing a metal layer onto the dielectric and lining the via such that the metal layer is in contact with the Cu line at the bottom of the via, wherein the metal layer comprises at least one metal that can react with Cu to form a Cu intermetallic; annealing the metal layer and the Cu line under conditions sufficient to form a Cu intermetallic barrier at the bottom of the via; and plating Cu into the via to form the Cu interconnect, wherein the Cu interconnect is separated from the Cu line by the Cu intermetallic barrier. A device structure is also provided.
摘要:
A method is presented for determining strain in a magnetoresistive random access memory (MRAM) structure. The method includes exposing long lines of the MRAM structure to monochromatic light to produce a diffraction pattern, measuring changes in interference fringe spacing in the diffraction pattern, determining the changes in the local strain in the MRAM structure from the measured changes in the interference fringe spacing, and assessing a performance of the MRAM structure from values of the changes in the local strain.
摘要:
A piezoelectronic switch device for radio frequency (RF) applications includes a piezoelectric (PE) material layer and a piezoresistive (PR) material layer separated from one another by at least one electrode, wherein an electrical resistance of the PR material layer is dependent upon an applied voltage across the PE material layer by way of an applied pressure to the PR material layer by the PE material layer; and a conductive, high yield material (C-HYM) comprising a housing that surrounds the PE material layer, the PR material layer and the at least one electrode, the C-HYM configured to mechanically transmit a displacement of the PE material layer to the PR material layer such that applied voltage across the PE material layer causes an expansion thereof and an increase the applied pressure to the PR material layer, thereby causing a decrease in the electrical resistance of the PR material layer.
摘要:
A volumetric integrated circuit manufacturing method is provided. The method includes assembling a slab element of elongate chips, exposing a wiring layer between adjacent elongate chips of the slab element, metallizing a surface of the slab element at and around the exposed wiring layer to form a metallized surface electrically coupled to the wiring layer and passivating the metallized surface to hermetically seal the metallized surface.
摘要:
A method of testing an integrated circuit (IC) chip and a related test structure are disclosed. A test structure includes a monitor chain proximate to at least one solder bump pad, the monitor chain including at least one metal via stack, each metal via stack extending from a lower metal layer in the IC chip to an upper metal layer in the IC chip, such that the monitor chain forms a continuous circuit proximate to the at least one solder bump pad, and where each metal via stack is positioned substantially under the solder bump. A method for testing to detect boundaries of safe effective modulus includes performing a stress test on an IC chip containing the test structure joined to a semiconductor package.
摘要:
A dielectric cap and related methods are disclosed. In one embodiment, the dielectric cap includes a dielectric material having an optical band gap (e.g., greater than about 3.0 electron-Volts) to substantially block ultraviolet radiation during a curing treatment, and including nitrogen with electron donor, double bond electrons. The dielectric cap exhibits a high modulus and is stable under post ULK UV curing treatments for, for example, copper low k back-end-of-line (BEOL) nanoelectronic devices, leading to less film and device cracking and improved reliability.
摘要:
A method of forming a hybrid interconnect structure including dielectric spacers is provided. The method includes forming at least one opening in a dielectric material utilizing a patterned hard mask located on a surface of the dielectric material as a mask, wherein an undercut is present beneath said patterned hard mask. Next, a dense dielectric spacer is formed in the at least one opening and at least partially on exposed sidewalls of the dielectric material. A diffusion barrier and a conductive material are then formed within the at least one opening.
摘要:
A method of forming a hybrid interconnect structure including dielectric spacers is provided. The method includes forming at least one opening in a dielectric material utilizing a patterned hard mask located on a surface of the dielectric material as a mask, wherein an undercut is present beneath said patterned hard mask. Next, a dense dielectric spacer is formed in the at least one opening and at least partially on exposed sidewalls of the dielectric material. A diffusion barrier and a conductive material are then formed within the at least one opening.