Abstract:
A charge-compensation semiconductor device includes a semiconductor body having a first surface, a lateral edge delimiting the semiconductor body in a horizontal direction substantially parallel to the first surface, an active area, a peripheral area arranged between the active area and the lateral edge, a drift region, first compensation regions forming respective first pn-junctions with the drift region, and second compensation regions extending from the first surface into the drift region and forming respective second pn-junctions with the drift region. The first compensation regions form in the active area a lattice comprising a first base vector having a first length. The second compensation regions have, in a horizontal direction parallel to the first surface, a horizontal width which decreases with an increasing vertical distance from the first surface and with a decreasing horizontal distance from the edge.
Abstract:
A field-effect semiconductor device includes a semiconductor body having a first surface and an edge, an active area, and a peripheral area between the active area and the edge, a source metallization on the first surface and a drain metallization. In the active area, first conductivity type drift portions alternate with second conductivity type compensation regions. The drift portions contact the drain metallization and have a first maximum doping concentration. The compensation regions are in Ohmic contact with the source metallization. The peripheral area includes a first edge termination region and a second semiconductor region in Ohmic contact with the drift portions having a second maximum doping of the first conductivity type which lower than the first maximum doping concentration by a factor of ten. The first edge termination region of the second conductivity type adjoins the second semiconductor region and is in Ohmic contact with the source metallization.
Abstract:
A super junction semiconductor device includes a layered compensation structure with an n-type compensation layer and a p-type compensation layer, a dielectric layer facing the p-type layer, and an intermediate layer interposed between the dielectric layer and the p-type compensation layer. The layered compensation structure and the intermediate layer are provided such that when a reverse blocking voltage is applied between the n-type and p-type compensation layers, holes accelerated in the direction of the dielectric layer have insufficient energy to be absorbed and incorporated into the dielectric material. Since the dielectric layer absorbs and incorporates significantly less holes than without the intermediate layer, the breakdown voltage remains stable over a long operation time.
Abstract:
A super junction structure is formed in a semiconductor portion of a super junction semiconductor device. The super junction structure includes a compensation structure with a first compensation layer of a first conductivity type and a second compensation layer of a complementary second conductivity type. The compensation structure lines at least sidewall portions of compensation trenches that extend between semiconductor mesas along a vertical direction perpendicular to a first surface of the semiconductor portion. Within the super junction structure and a pedestal layer that may adjoin the super junction structure, a sign of a lateral compensation rate changes along the vertical direction resulting in a local peak of a vertical electric field gradient and to improved avalanche ruggedness.
Abstract:
According to an embodiment, a method of forming a power semiconductor device is provided. The method includes providing a semiconductor substrate and forming an epitaxial layer on the semiconductor substrate. The epitaxial layer includes a body region, a source region, and a drift region. The method further includes forming a dielectric layer on the epitaxial layer. The dielectric layer is formed thicker above a drift region of the epitaxial layer than above at least part of the body region and the dielectric layer is formed at a temperature less than 950° C.
Abstract:
A semiconductor assembly includes a substrate including a metal die attach surface, a semiconductor die that is arranged on the substrate, the semiconductor die being configured as a power semiconductor device and comprising a semiconductor body, a rear side metallization, and a front side layer stack, the front side layer stack comprising a front side metallization and a contaminant protection layer that is between the front side metallization and the semiconductor body, and a diffusion soldered joint between the metal die attach surface and the rear side metallization, the diffusion soldered joint comprising one or more intermetallic phases throughout the diffusion soldered joint, wherein the contaminant protection layer is configured to prevent transmission of contaminants into the semiconductor body.
Abstract:
Disclosed is a method for producing a transistor device and a transistor device. The method includes: forming a source region of a first doping type in a body region of a second doping type in a semiconductor body; and forming a low-resistance region of the second doping type adjoining the source region in the body region. Forming the source region includes implanting dopant particles of the first doping type using an implantation mask via a first surface of the semiconductor body into the body region. Implanting the doping particles of the first doping type includes a tilted implantation.
Abstract:
According to an embodiment, a method of forming a power semiconductor device is provided. The method includes providing a semiconductor substrate and forming an epitaxial layer on the semiconductor substrate. The epitaxial layer includes a body region, a source region, and a drift region. The method further includes forming a dielectric layer on the epitaxial layer. The dielectric layer is formed thicker above a drift region of the epitaxial layer than above at least part of the body region and the dielectric layer is formed at a temperature less than 950° C.
Abstract:
A field-effect semiconductor device includes a semiconductor body having a first surface and an edge, an active area, and a peripheral area between the active area and the edge, a source metallization on the first surface and a drain metallization. In the active area, first conductivity type drift portions alternate with second conductivity type compensation regions. The drift portions contact the drain metallization and have a first maximum doping concentration. The compensation regions are in Ohmic contact with the source metallization. The peripheral area includes a first edge termination region and a second semiconductor region in Ohmic contact with the drift portions having a second maximum doping of the first conductivity type which lower than the first maximum doping concentration by a factor of ten. The first edge termination region of the second conductivity type adjoins the second semiconductor region and is in Ohmic contact with the source metallization.
Abstract:
A super junction structure is formed in a semiconductor portion of a super junction semiconductor device. The super junction structure includes a compensation structure with a first compensation layer of a first conductivity type and a second compensation layer of a complementary second conductivity type. The compensation structure lines at least sidewall portions of compensation trenches that extend between semiconductor mesas along a vertical direction perpendicular to a first surface of the semiconductor portion. Within the super junction structure and a pedestal layer that may adjoin the super junction structure, a sign of a lateral compensation rate changes along the vertical direction resulting in a local peak of a vertical electric field gradient and to improved avalanche ruggedness.