Abstract:
A semiconductor device includes a semiconductor body with transistor cells arranged in an active area and absent in an edge area between the active area and a side surface. A field dielectric adjoins a first surface of the semiconductor body and separates, in the edge area, a conductive structure connected to gate electrodes of the transistor cells from the semiconductor body. The field dielectric includes a transition from a first vertical extension to a second, greater vertical extension. The transition is in the vertical projection of a non-depletable extension zone in the semiconductor body, wherein the non-depletable extension zone has a conductivity type of body/anode zones of the transistor cells and is electrically connected to at least one of the body/anode zones.
Abstract:
A semiconductor device includes a semiconductor body with transistor cells arranged in an active area and absent in an edge area between the active area and a side surface. A field dielectric adjoins a first surface of the semiconductor body and separates, in the edge area, a conductive structure connected to gate electrodes of the transistor cells from the semiconductor body. The field dielectric includes a transition from a first vertical extension to a second, greater vertical extension. The transition is in the vertical projection of a non-depletable extension zone in the semiconductor body, wherein the non-depletable extension zone has a conductivity type of body/anode zones of the transistor cells and is electrically connected to at least one of the body/anode zones.
Abstract:
A semiconductor device includes a first coil that is monolithically integrated in a first portion of a semiconductor body and that includes a first winding wrapping around a first core structure. A second coil is monolithically integrated in a second portion of the semiconductor body and includes a second winding wrapping around the second core structure. The first and second coils are magnetically coupled with each other. An insulator frame in the semiconductor body surrounds the first portion and excludes the second portion. High dielectric strength between the first and the second coils is achieved without patterning a backside metallization for connecting the turns of the windings and without being restricted to thin substrates.
Abstract:
In a field-effect semiconductor device, alternating first n-type and p-type pillar regions are arranged in the active area. The first n-type pillar regions are in Ohmic contact with the drain metallization. The first p-type pillar regions are in Ohmic contact with the source metallization. An integrated dopant concentration of the first n-type pillar regions substantially matches that of the first p-type pillar regions. A second p-type pillar region is in Ohmic contact with the source metallization, arranged in the peripheral area and has an integrated dopant concentration smaller than that of the first p-type pillar regions divided by a number of the first p-type pillar regions. A second n-type pillar region is arranged between the second p-type pillar region and the first p-type pillar regions, and has an integrated dopant concentration smaller than that of the first n-type pillar regions divided by a number of the first n-type pillar regions.
Abstract:
A semiconductor device includes a trench structure extending into a semiconductor body from a first surface. The trench structure has a shield electrode, a dielectric structure and a diode structure. The diode structure is arranged at least partly between the first surface and a first part of the dielectric structure. The shield electrode is arranged between the first part of the dielectric structure and a bottom of the trench structure. The shield electrode and the semiconductor body are electrically isolated by the dielectric structure. Corresponding methods of manufacture are also described.
Abstract:
A diode includes a semiconductor body, a first emitter region of a first conductivity type, a second emitter region of a second conductivity type, a base region arranged between the first and second emitter regions and having a lower doping concentration than the first and second emitter regions, a first emitter electrode electrically coupled to the first emitter region, a second emitter electrode in electrical contact with the second emitter region, a control electrode arrangement comprising a first control electrode section and a first dielectric layer arranged between the first control electrode section and the semiconductor body, and at least one pn junction extending to the first dielectric layer, or arranged distant to the first dielectric layer by less than 250 nm. The breakdown voltage of the diode is adjusted by applying a control potential to the first control electrode section.
Abstract:
A semiconductor device includes a semiconductor body, which includes transistor cells and a drift zone between a drain layer and the transistor cells. The drift zone includes a compensation structure. Above a depletion voltage a first output charge gradient obtained by increasing a drain-to-source voltage from the depletion voltage to a maximum drain-to-source voltage deviates by less than 5% from a second output charge gradient obtained by decreasing the drain-to-source voltage from the maximum drain-to-source voltage to the depletion voltage. At the depletion voltage the first output charge gradient exhibits a maximum curvature.
Abstract:
A semiconductor device includes a semiconductor body with transistor cells arranged in an active area and absent in an edge area between the active area and a side surface. A field dielectric adjoins a first surface of the semiconductor body and separates, in the edge area, a conductive structure connected to gate electrodes of the transistor cells from the semiconductor body. The field dielectric includes a transition from a first vertical extension to a second, greater vertical extension. The transition is in the vertical projection of a non-depletable extension zone in the semiconductor body, wherein the non-depletable extension zone has a conductivity type of body/anode zones of the transistor cells and is electrically connected to at least one of the body/anode zones.
Abstract:
A high voltage semiconductor switch includes a first field-effect transistor having a source, a drain and a gate, and being adapted for switching a voltage at a rated high-voltage level, the first field-effect transistor being a normally-off enhancement-mode transistor, a second field-effect transistor having a source, a drain and a gate, connected in series to the first field-effect transistor, the second field-effect transistor being a normally-on depletion-mode transistor; and a control unit connected to the drain of the first field-effect transistor and to the gate of the second field-effect transistor and being operable for blocking the second field-effect transistor if a drain-source voltage across the first field-effect transistor exceeds the rated high-voltage level.
Abstract:
Disclosed is a semiconductor device, an electronic circuit, and a method. The semiconductor device includes a semiconductor body; at least one transistor cell including a source region, a drift region, a body region separating the source region from the drift region, and a drain region in the semiconductor body, and a gate electrode dielectrically insulated from the body region by a gate dielectric; a source node connected to the source region and the body region; a contact node spaced apart from the body region and the drain region and electrically connected to the drain region; and a rectifier element formed between the contact node and the source node.