Abstract:
A device includes a driver circuit, a first semiconductor chip monolithically integrated with the driver circuit in a first semiconductor material, and a second semiconductor chip integrated in a second semiconductor material. The second semiconductor material is a compound semiconductor.
Abstract:
A method of manufacturing a semiconductor device includes providing an electrically conductive carrier and placing a semiconductor chip over the carrier. The method includes applying an electrically insulating layer over the carrier and the semiconductor chip. The electrically insulating layer has a first face facing the carrier and a second face opposite to the first face. The method includes selectively removing the electrically insulating layer and applying solder material where the electrically insulating layer is removed and on the second face of the electrically insulating layer.
Abstract:
A semiconductor component may include a semiconductor layer which has a front side and a back side, a first terminal electrode on the front side, a second terminal electrode on the back side, a first dopant region of a first conduction type on the front side, which is electrically connected to one of the terminal electrodes, a second dopant region of a second conduction type in the semiconductor layer, which is electrically connected to the other terminal electrode, a pn junction being formed between the first and second dopant regions, a dielectric layer on the back side between the semiconductor layer and the second terminal electrode, and the dielectric layer having an opening through which an electrical connection between the second terminal electrode and the first or second dopant region is passed.
Abstract:
A semiconductor device includes a transistor in a semiconductor body having a main surface. The transistor includes a source region; a drain region; a body region; a drift zone; a gate electrode at the body region, the body region and the drift zone being disposed along a first direction between the source region and the drain region, and the first direction being parallel to the main surface; a field plate disposed in each of a plurality of field plate trenches, each of the field plate trenches having a longitudinal axis extending along the first direction; and a field dielectric layer between the field plate and the drift zone, a thickness of the field dielectric layer at a bottom of each of the field plate trenches gradually increases along the first direction, the thickness being measured along a depth direction of the plurality of field plate trenches.
Abstract:
A method of manufacturing a semiconductor device is providing, which includes forming a trench in a semiconductor substrate, forming an oxide layer over sidewalls and over a bottom side of the trench, performing an ion implantation process, forming a cover layer, and patterning the covering layer, thereby forming an uncovered area and a covered area of the oxide layer, respectively. The method further includes performing an isotropic etching process thereby removing portions of the uncovered area of the oxide layer and removing a part of a surface portion of the covered area adjacent to the uncovered portions, and removing remaining portions of the covering layer.
Abstract:
A semiconductor device is provided that includes a transistor in a semiconductor body having a main surface. The transistor includes a source region, a drain region, a body region, a drift zone, and a gate electrode at the body region. The body region and the drift zone are disposed along a first direction between the source region and the drain region. The first direction is parallel to the main surface. The semiconductor device further includes a field plate disposed in field plate trenches extending along the first direction in the drift zone, and a field dielectric layer between the field plate and the drift zone. A thickness of the field dielectric layer gradually increases along the first direction from a portion adjacent to the source region to a portion adjacent to the drain region.
Abstract:
A semiconductor device includes a semiconductor body and an edge termination structure. The edge termination structure comprises a first oxide layer, a second oxide layer, a semiconductor mesa region between the first oxide layer and the second oxide layer, and a doped field region comprising a first section in the semiconductor mesa region, and a second section in a region below the semiconductor mesa region. The second section overlaps the first and the second oxide layers in the region below the semiconductor mesa region.
Abstract:
A method of manufacturing a semiconductor device is providing, which includes forming a trench in a semiconductor substrate, forming an oxide layer over sidewalls and over a bottom side of the trench, performing an ion implantation process, forming a cover layer, and patterning the covering layer, thereby forming an uncovered area and a covered area of the oxide layer, respectively. The method further includes performing an isotropic etching process thereby removing portions of the uncovered area of the oxide layer and removing a part of a surface portion of the covered area adjacent to the uncovered portions, and removing remaining portions of the covering layer.
Abstract:
A device includes a driver circuit, a first semiconductor chip monolithically integrated with the driver circuit in a first semiconductor material, and a second semiconductor chip integrated in a second semiconductor material. The second semiconductor material is a compound semiconductor.
Abstract:
A device includes a first semiconductor chip that is arranged over a first carrier and includes a first electrical contact. The device further includes a second semiconductor chip arranged over a second carrier and including a second electrical contact arranged over a surface of the second semiconductor chip facing the second carrier. The second carrier is electrically coupled to the first electrical contact and the second electrical contact.