摘要:
A ceramic circuit board comprises a ceramic substrate having a glaze film formed thereon, the glaze film being overlaid with a functional thin film such as a ferromagnetic film serving as a magnetic sensor, for example. The ceramic substrate is made of a low-firing ceramic material such as a glass ceramic material which can be sintered at a temperature below 1000.degree. C. by co-firing with the glaze film. Preferably, the ceramic substrate has a recess on its top surface, and the glaze film is embedded in the recess such that the difference in level between the ceramic substrate and the glaze film is 20 .mu.m or less. The ceramic circuit board can be produced by preparing a plurality of ceramic green sheets from a low-firing ceramic material, laminating the ceramic green sheets after a through-hole or indentation is formed in the uppermost sheet, thereby forming a multilayer ceramic green substrate having a recess on its top surface, filling the recess with a glaze-forming glass material to such a height that the difference in level between the ceramic substrate and the glaze film formed after firing is 20 .mu.m or less, and co-firing the ceramic green substrate and the glaze-forming glass material at a temperature below 1000.degree. C.
摘要:
A low-temperature fired ceramic circuit substrate fired at a temperature ranging between 800.degree. and 1,000.degree. C. includes a plurality of insulating layers each formed of a low-temperature fired ceramic, an Ag conductor layer formed internally of the substrate, an Au conductor layer formed on a surface of the substrate, and an Ag-Pd layer formed between the Ag and the Au conductor layers, the Ag-Pd layer being composed of 100 parts metal composition consisting of 70 to 95 parts Ag and 5 to 30 part Pd by weight, and 2 to 10 parts lead borosilicate glass by weight. As the result of the above composition of the ceramic circuit substrate, its fabrication process can be simplified, and a defect rate in a connection between the Ag and Au layers after repeated firing is rendered approximately zero, which ensures high reliability for the connection.
摘要:
A ceramic circuit substrate is fabricated by preparing ceramic greensheets for the fabrication of the ceramic circuit substrate, and unsintered ceramic sheets unsinterable at a sintering temperature of said ceramic greensheets, forming via holes in said ceramic greensheets and filling the via holes with via hole conductor paste, printing conductive patterns on the ceramic greensheets, stacking and laminating the ceramic greensheets to prepare a laminated body, placing said unsintered ceramic sheets on the uppermost layer and-on the lowermost layer of the laminated body, bonding the sheets together by thermocompression to prepare a compressed body, firing the compressed body at the sintering temperature of ceramic greensheets, and removing the unsintered ceramic greensheets, wherein said via hole conductors are only in connection with the conductive patterns at the upper and/or lower ends of each via hole conductor.
摘要:
A low-temperature fired ceramic circuit substrate fired at a temperature ranging between 800.degree. and 1,000.degree. C. includes a plurality of insulating layers each formed of a low-temperature fired ceramic, an Ag conductor layer formed internally of the substrate, an Au conductor layer formed on a surface of the substrate, and an Ag--Pd layer formed between the Ag and the Au conductor layers, the Ag--Pd layer being composed of 100 parts metal composition consisting of 70 to 95 parts Ag and 5 to 30 part Pd by weight, and 2 to 10 parts lead borosilicate glass by weight. As the result of the above composition of the ceramic circuit substrate, its fabrication process can be simplified, and a defect rate in a connection between the Ag and Au layers after repeated firing is rendered approximately zero, which ensures high reliability for the connection.
摘要:
A process for producing circuit substrate is prepared by preparing at least one ceramic greensheet containing glass and sinterable at a low temperature for forming the circuit substrate, and at least one unsintered transfer sheet unsinterable at a sintering temperature of the ceramic greensheet, printing a wiring pattern on the unsintered transfer sheet, stacking the unsintered transfer sheet on the ceramic greensheet to form a laminated body and thermocompressing the laminated body to form a compressed body, firing the compressed body at a sintering temperature of the ceramic greensheet to form a ceramic substrate, thereby preparing a fired body by transferring the wiring pattern on the unsintered transfer sheet to the ceramic substrate, and removing the unsintered transfer sheet from the fired body to prepare a circuit substrate.
摘要:
A ceramic circuit substrate providing a circuit pattern with a fine line as well as high accuracy for positioning the circuit pattern and a method of producing the ceramic circuit substrate. An alumina layer that is green containing an alumina that is not sintered at a temperature ranging from 800.degree. to 1000.degree. C. is applied on a surface of a ceramic green sheet containing glass and then fired at a temperature ranging from 800.degree. to 1000.degree. C. The ceramic green sheet is sintered into a sintered ceramic substrate. A porous alumina layer is formed on a surface of the sintered ceramic substrate. The glass contained in the sintered ceramic substrate is caused to flow to the inside of the porous alumina layer so that the part of the porous alumina layer filled with the glass is bonded to the sintered ceramic substrate. The part of the porous alumina layer not filled with the glass is removed, wherein the porous alumina layer remaining on the sintered ceramic substrate after the removing has a thickness of 10 .mu.m or less. A paste for forming the circuit pattern is printed on a surface of the part of the porous alumina layer that has been bonded to the sintered ceramic substrate for heating.
摘要:
A thick-film resistor contains RuO2 and an SiO2—B2O3—K2O glass having a composition of 60 wt %≦SiO2≦85 wt %, 15 wt %≦B2O3≦40 wt %, 0.1 wt %≦K2O≦10 wt %, and impurity ≦3 wt %. A ceramic circuit board includes a thick-film resistor printed on it, the thick-film resistor containing RuO2 and an SiO2—B2O3—K2O glass having the above composition.
摘要翻译:厚膜电阻器包含RuO 2和SiO 2-B 2 O 3 -K 2 O玻璃,其组成为60重量%<= SiO 2 = 85重量%,15重量%≤B2 O 3≤40重量%,0.1重量%K 2 O = = 10重量%,杂质<= 3重量%。 陶瓷电路板包括印刷在其上的厚膜电阻器,含有RuO 2的厚膜电阻器和具有上述组成的SiO 2 -B 2 O 3 -K 2 O玻璃。
摘要:
A ceramic circuit element comprising a ceramic substrate having co-fired resistor and glass overcoat thereon in which the resistor is formed from a resistor paste consisting essentially of RuO.sub.2 powder, glass powder and a vehicle comprising an organic polymer and a solvent, the RuO.sub.2 powder and the glass powder having specific surface areas of 10 to 20 m.sup.2 /g and 4 to 14 m.sup.2 /g, respectively; the glass overcoat is formed from a glass overcoat paste consisting essentially of a glass composition and a vehicle comprising an organic polymer and a solvent, the glass composition having a specific surface area of 2 to 6 m.sup.2 /g; and the ceramic circuit substrate comprises a CaO--Al.sub.2 O.sub.3 --SiO.sub.2 --B.sub.2 O.sub.3 system or MgO--Al.sub.2 O.sub.3 --SiO.sub.2 --B.sub.2 O.sub.3 system glass and alumina. The use of the foregoing resistor and glass overcoat pastes minimizes the bubbles remaining in the resistor and realizes the exertion of resistance performance ensuring excellent weather resistance and stability, even after the resistor is subjected to trimming.
摘要:
In an article comprising a ceramic body fired at a comparatively low temperature and a circuit pattern attached to the body, the ceramic body is produced from a preselected composition comprising first powder of alumina and second powder of a vitreous material which comprises any one of MgO-Al.sub.2 O.sub.3 -SiO.sub.2, CaO-MgO-Al.sub.2 O.sub.3 -SiO.sub.2, CaO-Al.sub.2 O.sub.3 -SiO.sub.2 glass, CaO-Al.sub.2 O.sub.3 -SiO.sub.2 -B.sub.2 O.sub.3 glass, MgO-Al.sub.2 O.sub.3 -SiO.sub.2 -B.sub.2 O.sub.3 glass, and CaO-MgO-Al.sub.2 O.sub.3 SiO.sub.2 -B.sub.2 O.sub.3 glass. The ceramic body comprises coexistence of an alumina part, a noncrystallized part, and a crystallized part and exhibits an excellent moisture proof. The circuit pattern comprises an internal conductive pattern of Ag and an external conductive pattern of an alloy of Ag-Pd. A chromium component may be included in the internal and the external conductive patterns. External and internal resistor patterns are placed on and within the ceramic body with a high and a low precision. The internal resistor pattern can be adjusted by the use of a laser beam through a thin film included in the ceramic body.
摘要:
An evaluation method of residual stress in water jet peening includes a step of creating an analytical model including meshes according to a water jet peening (WJP) object, the shape of a nozzle, and an injection distance, a step of inputting WJP execution conditions, a step of calculating the internal pressure pBi of a cavitation bubble and a bubble number density ngi through jet flow analysis for a jet flow jetting from the nozzle, a step of calculating cavitation energy according to the internal pressure pBi of a cavitation bubble and a bubble number density ngi (S4), a step of calculating the burst energy of cavitation bubbles from the cavitation energy C, and a step of calculating the compressive residual stress of the WJP object from the collapse pressure of cavitation bubbles. Accordingly, the residual stress of the WJP object can be evaluated precisely in a shorter time.