Abstract:
Semiconductor devices with through silicon vias (TSVs) are formed without copper contamination. Embodiments include exposing a passivation layer surrounding a bottom portion of a TSV in a silicon substrate, forming a silicon composite layer over the exposed passivation layer and over a bottom surface of the silicon substrate, forming a hardmask layer over the silicon composite layer and over the bottom surface of the silicon substrate, removing a section of the silicon composite layer around the bottom portion of the TSV using the hardmask layer as a mask, re-exposing the passivation layer, and removing the hardmask layer and the re-exposed passivation layer to expose a contact for the bottom portion of the TSV.
Abstract:
Methods for fabricating integrated circuits are disclosed. In an exemplary embodiment, a method for fabricating an integrated circuit includes forming a silicon material layer over a semiconductor substrate. The semiconductor substrate includes a logic device region and a memory array region. The memory array region has a memory device formed on the semiconductor substrate. The method further includes forming a capping layer over the silicon material layer and over the memory device and removing the capping layer from over the memory device in the memory array region using a first chemical mechanical polishing process while leaving at least a first portion of the capping layer in place over the logic device region. Further, the method includes removing the first the silicon material layer from over the memory device in the memory array region using a second chemical mechanical polishing process.
Abstract:
Structures for a non-volatile memory element and methods of forming a structure for a non-volatile memory element. A switching layer is positioned over a first electrode, and a dielectric layer is positioned over the switching layer. The dielectric layer includes an opening extending to the switching layer. A second electrode includes a portion in the opening in the dielectric layer. The portion of the second electrode is in contact with a first portion of the switching layer. The switching layer further includes a second portion positioned between the dielectric layer and the first electrode.
Abstract:
Integrated circuits with reduced shorting and methods for fabricating such integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes depositing a gap fill dielectric overlying a semiconductor substrate. The gap fill dielectric is formed with an upper surface having a height differential. The method includes reducing the height differential of the upper surface of the gap fill dielectric. Further, the method includes depositing an interlayer dielectric overlying the gap fill dielectric. Also, the method forms an electrical contact to a selected location overlying the semiconductor substrate.
Abstract:
Integrated circuits with reduced shorting and methods for fabricating such integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes depositing a gap fill dielectric overlying a semiconductor substrate. The gap fill dielectric is formed with an upper surface having a height differential. The method includes reducing the height differential of the upper surface of the gap fill dielectric. Further, the method includes depositing an interlayer dielectric overlying the gap fill dielectric. Also, the method forms an electrical contact to a selected location overlying the semiconductor substrate.
Abstract:
A semiconductor device includes a first insulating layer; a second insulating layer arranged over the first insulating layer; a memory structure arranged within a memory region and including a resistance changing memory element within the first insulating layer; and a logic structure arranged within a logic region. In the memory region, the first insulating layer may contact the second insulating layer and in the logic region, the semiconductor device may further include a stop layer arranged between the first insulating layer and the second insulating layer.
Abstract:
Structures for a non-volatile memory element and methods of forming a structure for a non-volatile memory element. A switching layer is positioned over a first electrode, and a dielectric layer is positioned over the switching layer. The dielectric layer includes an opening extending to the switching layer. A second electrode includes a portion in the opening in the dielectric layer. The portion of the second electrode is in contact with a first portion of the switching layer. The switching layer further includes a second portion positioned between the dielectric layer and the first electrode.
Abstract:
Methods of forming a pillar contact extension within a memory device using a self-aligned planarization process rather than direct ILD CMP and the resulting devices are provided. Embodiments include forming a photoresist layer over a low-K layer formed over an ILD having a first metal layer in a memory region and in a logic region and pillar-shaped conductors formed atop of the first metal layer only in the memory region; forming a trench through the photoresist layer over each pillar-shaped conductor; extending the trench through the low-K layer to an upper surface of each pillar-shaped conductor; forming a second metal layer over the low-K layer, filling the trench entirely; and planarizing the second metal layer until the second metal layer is removed from over the logic region, a pillar contact extension formed atop of each pillar-shaped conductor.
Abstract:
Methods for fabricating integrated circuits are disclosed. In an exemplary embodiment, a method for fabricating an integrated circuit includes forming a silicon material layer over a semiconductor substrate. The semiconductor substrate includes a logic device region and a memory array region. The memory array region has a memory device formed on the semiconductor substrate. The method further includes forming a capping layer over the silicon material layer and over the memory device and removing the capping layer from over the memory device in the memory array region using a first chemical mechanical polishing process while leaving at least a first portion of the capping layer in place over the logic device region. Further, the method includes removing the first the silicon material layer from over the memory device in the memory array region using a second chemical mechanical polishing process.
Abstract:
According to various embodiments, there is provided a memory cell. The memory cell may include a transistor, a dielectric member, an electrode and a contact member. The dielectric member may be disposed over the transistor. The electrode may be disposed over the dielectric member. The contact member has a first end and a second end opposite to the first end. The first end is disposed towards the transistor, and the second end is disposed towards the dielectric member. The contact member has a side surface extending from the first end to the second end. The second end may have a recessed end surface that has a section that slopes towards the side surface so as to form a tip with the side surface at the second end. The dielectric member may be disposed over the second end of the contact member and may include at least a portion disposed over the tip.