Abstract:
The present invention relates to a multi-beamlet multi-column particle-optical system comprising a plurality of columns which are disposed in an array for simultaneously exposing a substrate, each column having an optical axis and comprising: a beamlet generating arrangement comprising at least one multi-aperture plate for generating a pattern of multiple beamlets of charged particles, and an electrostatic lens arrangement comprising at least one electrode element; the at least one electrode element having an aperture defined by an inner peripheral edge facing the optical axis, the aperture having a center and a predetermined shape in a plane orthogonal to the optical axis; wherein in at least one of the plurality of columns, the predetermined shape of the aperture is a non-circular shape with at least one of a protrusion and an indentation from an ideal circle about the center of the aperture.
Abstract:
In a particle-optical projection system (32) a pattern (B) is imaged onto a target (tp) by means of energetic electrically charged particles. The pattern is represented in a patterned beam (pb) of said charged particles emerging from the object plane through at least one cross-over (c); it is imaged into an image (S) with a given size and distortion. To compensate for the Z-deviation of the image (S) position from the actual positioning of the target (tp) (Z denotes an axial coordinate substantially parallel to the optical axis cx), without changing the size of the image (S), the system comprises a position detection means (ZD) for measuring the Z-position of several locations of the target (tp), a control means (33) for calculating modifications (cr) of selected lens parameters of the final particle-optical lens (L2) and controlling said lens parameters according to said modifications.
Abstract translation:在粒子光学投影系统(32)中,通过能量带电粒子将图案(B)成像到目标(tp)上。 所述图案通过至少一个交叉(c)从所述物体平面出射的所述带电粒子的图案化束(pb)中表示; 它被成像为具有给定大小和失真的图像(S)。 为了补偿图像(S)位置与目标的实际定位(tp)(Z表示基本上平行于光轴cx的轴向坐标)的Z偏差,而不改变图像(S)的尺寸, 该系统包括用于测量目标(tp)的若干位置的Z位置的位置检测装置(ZD),用于计算最终粒子光学透镜的选定透镜参数的修改(cr)的控制装置(33) L 2),并根据所述修改来控制所述透镜参数。
Abstract:
A beam manipulating arrangement for a multi beam application using charged particles comprises a multi-aperture plate having plural apertures traversed by beams of charged particles. A frame portion of the multi-aperture plate is heated to reduce temperature gradients within the multi-aperture plate. Further, a heat emissivity of a surface of the multi-aperture plate may be higher in some regions as compared to other regions in view of also reducing temperature gradients.
Abstract:
In a particle-optical projection system a pattern is imaged onto a target by means of energetic electrically charged particles. The pattern is represented in a patterned beam of said charged particles emerging from the object plane through at least one cross-over; it is imaged into an image with a given size and distortion. To compensate for the Z-deviation of the image position from the actual positioning of the target (Z denotes an axial coordinate substantially parallel to the optical axis), without changing the size of the image, the system includes a position detector for measuring the Z-position of several locations of the target, and a controller for calculating modifications of selected lens parameters of the final particle-optical lens and controlling said lens parameters according to said modifications.
Abstract:
A particle-beam exposure apparatus (1) for irradiating a target (41) by means of a beam (2) of energetic electrically charged particles comprises: an illumination system (101) for generating and forming said particles into a directed beam (21); a pattern definition means (102) located after the illumination system for positioning a pattern of apertures transparent to the particles in the path of the directed beam, thus forming a patterned beam (22) emerging from the pattern definition means through the apertures; and a projection system (103) positioned after the pattern definition means (102) for projecting the patterned beam (22) onto a target (41) positioned after the projection system. The apparatus further comprises an acceleration/deceleration means (32) containing an electric potential gradient which is oriented substantially parallel to the path of the structured beam and constant over at least a cross-section of the beam.
Abstract:
An apparatus for masked ion-beam lithography comprises a mask maintenance module for prolongation of the lifetime of the stencil mask. The module comprises a deposition means for depositing material to the side of the mask irradiated by the lithography beam, with at least one deposition source being positioned in front of the mask, and further comprises a sputter means in which at least one sputter source, positioned in front of the mask holder means and outside the path of the lithography beam, produces a sputter ion beam directed to the mask in order to sputter off material from said mask in a scanning procedure and compensate for inhomogeneity of deposition.
Abstract:
A particle-beam exposure apparatus (1) for irradiating a target (41) by means of a beam (2) of energetic electrically charged particles comprises: an illumination system (101) for generating and forming said particles into a directed beam (21); a pattern definition means (102) located after the illumination system for positioning a pattern of apertures transparent to the particles in the path of the directed beam, thus forming a patterned beam (22) emerging from the pattern definition means through the apertures; and a projection system (103) positioned after the pattern definition means (102) for projecting the patterned beam (22) onto a target (41) positioned after the projection system. The apparatus further comprises an acceleration/ deceleration means (32) containing an electric potential gradient which is oriented substantially parallel to the path of the structured beam and constant over at least a cross-section of the beam.
Abstract:
A device (102) for defining a pattern, for use in a particle-beam exposure apparatus (100), said device adapted to be irradiated with a beam (lb,pb) of electrically charged particles and let pass the beam only through a plurality of apertures, comprises an aperture array means (203) and a blanking means (202). The aperture array means (203) has a plurality of apertures (21,230) of identical shape defining the shape of beamlets (bm). The blanking means (202) serves to switch off the passage of selected beamlets; it has a plurality of openings (220), each corresponding to a respective aperture (230) of the aperture array means (203) and being provided with a deflection means (221) controllable to deflect particles radiated through the opening off their path (p1) to an absorbing surface within said exposure apparatus (100). The apertures (21) are arranged on the blanking and aperture array means (202,203) within a pattern definition field (pf) being composed of a plurality of staggered lines (p1) of apertures. Each of the lines (p1) comprises alternately first segments (sf) which are free of apertures and second segments (af) which each comprise a number of apertures spaced apart by a row offset (pm), said row offset being a multiple of the width (w) of apertures, the length (A) of said first segments (sf) being greater than the row offset. In front of the blanking means (202) as seen in the direction of the particle beam, a cover means (201) is provided having a plurality of openings (210), each corresponding to a respective opening (230) of the blanking means and having a width (w1) which is smaller than the width (w2) of the openings (220) of the blanking array means.
Abstract:
A charged particle system comprises a particle source for generating a beam of charged particles and a particle-optical projection system. The particle-optical projection system comprises a focusing first magnetic lens (403) comprising an outer pole piece (411) having a radial inner end (411′), and an inner pole piece (412) having a lowermost end (412′) disposed closest to the radial inner end of the outer pole piece, a gap being formed by those; a focusing electrostatic lens (450) having at least a first electrode (451) and a second electrode (450) disposed in a region of the gap; and a controller (C) configured to control a focusing power of the first electrostatic lens based on a signal indicative of a distance of a surface of a substrate from a portion of the first magnetic lens disposed closest to the substrate.
Abstract:
The present invention relates to a multi-beamlet multi-column particle-optical system comprising a plurality of columns which are disposed in an array for simultaneously exposing a substrate, each column having an optical axis and comprising: a beamlet generating arrangement comprising at least one multi-aperture plate for generating a pattern of multiple beamlets of charged particles, and an electrostatic lens arrangement comprising at least one electrode element; the at least one electrode element having an aperture defined by an inner peripheral edge facing the optical axis, the aperture having a center and a predetermined shape in a plane orthogonal to the optical axis; wherein in at least one of the plurality of columns, the predetermined shape of the aperture is a non-circular shape with at least one of a protrusion and an indentation from an ideal circle about the center of the aperture.