Abstract:
A terminal for performing device-to-device (D2D) communication, according to an embodiment of the present invention, includes an antenna configured to transmit/receive an uplink channel signal and a downlink channel signal, a duplexer configured to separate a transmission/reception signal of the antenna into the uplink channel signal and the downlink channel signal, a switch configured to switch the uplink channel signal in a time division duplex (TDD) scheme so as to separate the uplink channel signal into an uplink transmission block and a first reception block, and a second reception block configured to convert the downlink channel signal provided from the duplexer into a baseband.
Abstract:
Provided is a beam forming device. The beam forming device of the present invention may feedback power-amplified signals to perform digital pre-distortion for improving the non-linearity of an analog element in a digital signal process terminal and control a phase for forming a beam. Therefore, the beam forming device that can form an accurate beam may be realized.
Abstract:
Provided is a second order loop filter (LF). The second order LF includes: an operational amplifier including a first input, a second input receiving a differential input of the first input, and an output; an inverter inverting a signal output from the output of the operational amplifier to output an inverted signal; a first resistor connected to between the first input and a first node; a second resistor connected to between the output of the operational amplifier and the first node; a third resistor connected to between the first input and an input signal; a first capacitor connected to between the second input and the first node; a second capacitor connected to between the output of the operational amplifier and an output of the inverter; and a third capacitor connected to between the output and the first input of the operational amplifier, wherein the second input is connected to a ground voltage.
Abstract:
Provided is a dual-polarized dipole antenna. The dual-polarized dipole antenna includes a substrate etched as first and second microstrip lines and provided in a cube, first to fourth feeding lines etched as third microstrip lines and disposed in a square type in a vertical direction to the substrate, and first to fourth radiation patches disposed in a square type in the vertical direction to the first to fourth feeding unit, wherein the first to fourth feeding units are respectively disposed on adjacent pairs of the first to fourth radiation patches. According to the present invention, a miniature dual-polarized dipole antenna having a wide bandwidth, high isolation characteristics, and a high gain can be provided.
Abstract:
Provided is a charge pump circuit having a current mirror structure, including a first voltage controller including a plurality of first resistors and a plurality of first switches, and in response to a switching control signal corresponding to a bias current, driving the plurality of first switches to allow a current path passing through the plurality of first resistors to bypass, thereby controlling a voltage level of an output end, a second voltage controller including a plurality of second resistors and a plurality of second switches, and in response to the switching control signal, driving the plurality of second switches to allow a current path passing through the plurality of second resistors to bypass, thereby controlling a voltage level of an output end to correspond to the voltage of the output end of the first voltage controller.
Abstract:
A semiconductor-based beamforming antenna is provided. The beamforming antenna includes: a waveguide having a silicon medium formed between metal and forming a waveguide path; at least one diode array disposed in the waveguide, the at least one diode array being driven according to an applied electrical signal to reflect an incident signal by acting as a conductive reflecting wall; a radiator connected to the waveguide and radiating a beam corresponding to a signal reflected by the at least one diode array or an incident signal; and a feeder for supplying an electrical signal into the waveguide.
Abstract:
A voltage comparator comparing a voltage of a first input signal and a voltage of a second input signal is provided. The voltage comparator includes: a first switch pair transmitting, respectively, the first input signal and the second input signal to a control terminal of a first transistor and a control terminal of a second transistor in response to a clock signal; a second switch pair connecting a first terminal and a second terminal of the first transistor and connecting a first terminal and a second terminal of the second transistor in response to at least one of the clock signal and a reset signal; and a first reset switch connecting the control terminal of the first transistor and the control terminal of the second transistor in response to the reset signal.
Abstract:
A signal receiving device for measuring a characteristic of a wireless communication channel is provided. The signal receiving device includes an analog signal processor, an analog-digital converter, and a digital signal processor. The analog signal processor generates a band-limited signal by decreasing an intensity of a signal having an image frequency in a correlation operation result signal being a result of correlation operation, and generates an intermediate frequency signal by transforming the band-limited signal. The analog-digital converter converts the intermediate frequency signal into a digital signal. The digital signal processor generates a demodulated signal by performing in-phase/quadrature-phase modulation on the digital signal, the demodulated signal including a baseband signal, which includes a direct current component, and signals repeated at constant frequency intervals with a same bandwidth as the baseband signal, and generates an impulse response signal by decreasing intensities of the repeated signals in the demodulated signal.
Abstract:
Provided is a fully differential signal system including a first amplification unit including first and second output terminals configured to output an output differential signal generated based on an input differential signal and a common mode feedback signal; a common mode detection unit configured to detect a common mode signal included in the output differential signal; a second amplification unit including a feedback signal output terminal configured to output the common mode feedback signal generated based on the detected common mode signal and a reference signal; a first stabilization unit connected between the first output terminal and the feedback signal output terminal; and a second stabilization unit connected between the second output terminal and the feedback signal output terminal. The fully differential signal system stably operates and an operation performance of the fully differential signal system is improved.
Abstract:
Provided is a signal transmission device including a first modulation unit generating a first modulated signal having at least three logic levels by modulating an input signal; a characteristic adjustment unit generating an adjusted first modulated signal by adjusting the at least one of electrical characteristic values based on an adjustment signal; a second modulation unit generating a second modulated signal by modulating the adjusted first modulated signal; and an adjustment operation unit generating the adjustment signal based on electrical characteristic values respectively corresponding to the at least three logic levels of the first modulated signal and corresponding to at least three logic levels of the second modulated signal. Linearity of the modulated signal generated by the provided signal transmission device is enhanced.