摘要:
An electrically conducting n-type ultrananocrystalline diamond (UNCD) having no less than 1019 atoms/cm3 of nitrogen is disclosed. A method of making the n-doped UNCD. A method for predictably controlling the conductivity is also disclosed.
摘要翻译:公开了具有不小于10 19原子/ cm 3的氮的导电n型超微晶金刚石(UNCD)。 制造n掺杂UNCD的方法。 还公开了可预测地控制电导率的方法。
摘要:
A method and system for manufacturing a field emission cathode having enhanced electron emission properties. The field emission cathode is prepared by providing a field emission substrate, an alkali metal alloy is formed at and below the exposed surface of the substrate, and a surface layer of alkali metal atoms are formed on the exposed surface by Gibbsian diffusion segregation action. If the monolayer, or surface layer, is desorbed, the diffusion action reestablishes the alkali metal surface layer thereby providing a stable alkali metal layer and enhanced electron emission characteristics.
摘要:
A monolithically integrated 3-D membrane or diaphragm/tip (called 3-D tip) of substantially all UNCD having a tip with a radius of about less than 50 nm capable of measuring forces in all three dimensions or being used as single tips or in large arrays for imprint of data on memory media, fabrication of nanodots of different materials on different substrates and many other uses such as nanolithography production of nanodots of biomaterials on substrates, etc. A method of molding UNCD is disclosed including providing a substrate with a predetermined pattern and depositing an oxide layer prior to depositing a carbide-forming metallic seed layer, followed by seeding with diamond nano or micropowder in solvent suspension, or mechanically polishing with diamond powder, or any other seeding method, followed by UNCD film growth conforming to the predetermined pattern. Thereafter, one or more steps of masking and/or etching and/or coating and/or selective removal and/or patterning and/or electroforming and/or lapping and/or polishing are used in any combination to form the tip or probe.
摘要:
A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a “fast discharge diamond dielectric layer” and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.
摘要:
A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a “fast discharge diamond dielectric layer” and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.
摘要:
The invention provides a method for producing bioinert biocompatible diamond particles/polymer composites or any other matrix (e.g. glass, metal, plastic, ceramic and more)/diamond particle composites, even if not biocompatible with outstanding mechanical, tribological, and biological properties, the method comprising selecting a polymer having a melting temperature below about 300 C; mixing diamond particles with the polymer to form a liquid mixture, poring the liquid diamond particle/polymer or any other diamond particle/matrix composite in liquid form into a mold and then causing the composite to sinter with the diamond particles densely and uniformly distributed through the bulk and surface of the composite, such that the diamond particles distributed on the surface can form a diamond layer covering the surface.
摘要:
A process for fabricating a piezoactuated storage device having a tip array and a memory media, which includes but is not limited to: etching the regions on the surface of the silicon wafer to produce substantially pyramidal etch pits by anisotropic etching or chemical etching with potassium hydroxide (KOH); growing an oxide layer on a top surface of the silicon wafer and in the substantially pyramidal etch pits to produce oxidation sharpening of the substantially pyramidal etch pits; forming an array of conductive tips of a nanocarbon film of nanostructured carbon material by deposition, wherein the nanostructured carbon material is ultrananocrystalline diamond (UNCD), ta-C, or diamond-like carbon films; and forming an oxygen diffusion barrier layer by deposition of a TiAl, TaAl, or any other oxygen diffusion barrier layer material on the nanocarbon film.
摘要:
A user-friendly multi-layer micro/nanofluidic flow device and micro/nano fabrication process are provided for numerous uses. The multi-layer micro/nanofluidic flow device can comprise: a substrate, such as indium tin oxide coated glass (ITO glass); a conductive layer of ferroelectric material, preferably comprising a PZT layer of lead zirconate titanate (PZT) positioned on the substrate; electrodes connected to the conductive layer; a nanofluidics layer positioned on the conductive layer and defining nanochannels; a microfluidics layer positioned upon the nanofluidics layer and defining microchannels; and biomolecular nanovalves providing bio-nanovalves which are moveable from a closed position to an open position to control fluid flow at a nanoscale.
摘要:
A flat panel display includes a ferroelectric thin film between first and second spaced apart electrodes. The ferroelectric thin film emits electrons upon application of a predetermined voltage between the first and second spaced apart electrodes. The electrons are emitted in an electron emission path and impinge upon a luminescent layer such as a phosphor layer, which produces luminescence upon impingement upon the emitter electrodes. The ferroelectric thin film is preferably about 2 .mu.m or less in thickness and is preferably a polycrystalline ferroelectric thin film. More preferably, the thin ferroelectric film is a highly oriented, polycrystalline thin ferroelectric film. Most preferably, highly oriented ferroelectric thin film has a preferred (001) crystal orientation and is about 2 .mu.m or less in thickness. A flat panel display may be formed of arrays of such display elements. Top and bottom electrodes or side electrodes may be used. The display may be formed using conventional microelectronic fabrication steps.
摘要:
An efficient deposition process is provided for fabricating reliable RF MEMS capacitive switches with multilayer ultrananocrystalline (UNCD) films for more rapid recovery, charging and discharging that is effective for more than a billion cycles of operation. Significantly, the deposition process is compatible for integration with CMOS electronics and thereby can provide monolithically integrated RF MEMS capacitive switches for use with CMOS electronic devices, such as for insertion into phase array antennas for radars and other RF communication systems.