Abstract:
Systems and methods for molecular sensing are described. Molecular sensors are described which are based on field-effect or bipolar junction transistors. These transistors have a nanopillar with a functionalized layer contacted to either the base or the gate electrode. The functional layer can bind molecules, which causes an electrical signal in the sensor.
Abstract:
Systems and methods for molecular sensing are described. Molecular sensors are described which are based on field-effect or bipolar junction transistors. These transistors have a nanopillar with a functionalized layer contacted to either the base or the gate electrode. The functional layer can bind molecules, which causes an electrical signal in the sensor.
Abstract:
Systems and methods for molecular sensing are described. Molecular sensors are described which are based on field-effect or bipolar junction transistors. These transistors have a nanopillar with a functionalized layer contacted to either the base or the gate electrode. The functional layer can bind molecules, which causes an electrical signal in the sensor.
Abstract:
A measurement device includes: a processing device and multiple sensors that capture tomographic information of a physiological structure. The sensors include a first sensor including a first transducer having a first frequency response with a first resonant frequency, and a second sensor including a second transducer having a second frequency response with a second resonant frequency different from the first resonant frequency. The first frequency response partially overlaps with the second frequency response. The second transducer transmits a signal that is reflected by the physiological structure to create a reflected signal, the first transducer generates a first received signal from the reflected signal, the second transducer generates a second received signal from the reflected signal, and the processing device normalizes the first received signal with the second received signal or the second received signal with the first received signal.
Abstract:
An enhanced stethoscope device and method for operating the enhanced stethoscope are provided. The enhanced stethoscope device generally operates by providing stethoscope sensors, ultrasonic sensors, and other sensors to obtain a series of measurements about a subject. The series of measurements may be correlated, such as by machine learning, to extract clinically relevant information. Also described are systems and methods for ultrasonic beamsteering by interference of an audio signal with an ultrasonic signal.
Abstract:
This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
Abstract:
This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
Abstract:
Methods of detecting at least one genetic variation in a polynucleotide analyte in a sample. A fluorophore is attached to a first primer, a quencher is attached to a second primer, the first primer and the second primer are specific for the polynucleotide analyte. A signal generated by the fluorophore and quencher is measured. PCR is performed with the first primer and the second primer using the polynucleotide analyte as a template, thereby amplifying the template. A signal generated by the fluorophore and quencher from the PCR amplification product is measured. Comparison is made of the signals; and a determination is made of the presence or absence of the at least one genetic variation based i) on the change in signal as determined; and ii) by comparing said change to the change in signal observed upon PCR amplification for a corresponding polynucleotide analyte lacking the at least one genetic variation.
Abstract:
This disclosure provides methods, compositions and kits for the detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, compositions, and kits for detecting analytes, genetic variations, monitoring reaction process, and monitoring analyte-analyte interactions by measuring signals. In some examples, the presence of signals or changes in signals may be used to construct signal profiles which can be used to detect analytes.
Abstract:
The present disclosure describes an optically powered transducer with a photovoltaic collector. An optical fiber power delivery method and system and a free space power delivery method are also provided. A fabrication process for making an optically powered transducer is further described, together with an implantable transducer system based on optical power delivery.