Abstract:
Methods and devices for sequencing nucleic acids are disclosed herein. Devices are also provided herein for measuring DNA with nano-pores sized to allow DNA to pass through the nano-pore. The capacitance can be measured for the DNA molecule passing through the nano-pore. The capacitance measurements can be correlated to determine the sequence of base pairs passing through the nano-pore to sequence the DNA.
Abstract:
The present disclosure describes a method for optically powering transducers and related transducers with a photovoltaic collector. An optical fiber power delivery method and a free space power delivery method are also provided. A fabrication process for making an optically powered transducer is further described, together with an implantable transducer system based on optical power delivery.
Abstract:
Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
Abstract:
A field effect nano-pillar transistor has a pillar shaped gate element incorporating a biomimitec portion that provides various advantages over prior art devices. The small size of the nano-pillar transistor allows for advantageous insertion into cellular membranes, and the biomimitec character of the gate element operates as an advantageous interface for sensing small amplitude voltages such as transmembrane cell potentials. The nano-pillar transistor can be used in various embodiments to stimulate cells, to measure cell response, or to perform a combination of both actions.
Abstract:
The basic structure and functionality of a probe as disclosed herein allows for flexibly incorporating into the probe, various sensing elements for various sensing applications. Two example applications among these various sensing applications include bio-sensing and chemical-sensing applications. For bio-sensing applications the probe, which is fabricated upon a silicon substrate, includes a bio-sensing element such as a nano-pillar transistor, and for chemical-sensing applications the probe includes a sensing element that has a functionalized contact area whereby the sensing element generates a voltage when exposed to one or more chemicals of interest.
Abstract:
The basic structure and functionality of a probe as disclosed herein allows for flexibly incorporating into the probe, various sensing elements for various sensing applications. Two example applications among these various sensing applications include bio-sensing and chemical-sensing applications. For bio-sensing applications the probe, which is fabricated upon a silicon substrate, includes a bio-sensing element such as a nano-pillar transistor, and for chemical-sensing applications the probe includes a sensing element that has a functionalized contact area whereby the sensing element generates a voltage when exposed to one or more chemicals of interest.
Abstract:
Methods and devices for sequencing nucleic acids are disclosed herein. Devices are also provided herein for measuring DNA with nano-pores sized to allow DNA to pass through the nano-pore. The capacitance can be measured for the DNA molecule passing through the nano-pore. The capacitance measurements can be correlated to determine the sequence of base pairs passing through the nano-pore to sequence the DNA.
Abstract:
Methods for fabricating silicon nanowire chemical sensing devices, devices thus obtained, and methods for utilizing devices for sensing and measuring chemical concentration of selected species in a fluid are described. Devices may comprise a metal-oxide-semiconductor field-effect transistor (MOSFET) structure.
Abstract:
The present disclosure describes an optically powered transducer with a photovoltaic collector. An optical fiber power delivery method and system and a free space power delivery method are also provided. A fabrication process for making an optically powered transducer is further described, together with an implantable transducer system based on optical power delivery.