摘要:
The present invention relates to phosphate-binding compounds that find use in binding, detecting and isolating phosphorylated target molecules including the subsequent identification of target molecules that interact with phosphorylated target molecules or molecules capable of being phosphorylated. A binding solution is provide that comprises a phosphate-binding compound, an acid and a metal ion wherein the metal ion simultaneously interacts with an exposed phosphate group on a target molecule and the metal chelating moiety of the phosphate-binding compound forming a bridge between the phosphate-binding compound and a phosphorylated target molecule resulting in a ternary complex. The binding solution of the present invention finds use in binding and detecting immobilized and solubilized phosphorylated target molecules, isolation of phosphorylated target molecules from a complex mixture and aiding in proteomic analysis wherein kinase and phosphatase substrates and enzymes can be identified.
摘要:
The present invention relates to phosphate-binding compounds that find use in binding, detecting and isolating phosphorylated target molecules including the subsequent identification of target molecules that interact with phosphorylated target molecules or molecules capable of being phosphorylated. A binding solution is provide that comprises a phosphate-binding compound, an acid and a metal ion wherein the metal ion simultaneously interacts with an exposed phosphate group on a target molecule and the metal chelating moiety of the phosphate-binding compound forming a bridge between the phosphate-binding compound and a phosphorylated target molecule resulting in a ternary complex. The binding solution of the present invention finds use in binding and detecting immobilized and solubilized phosphorylated target molecules, isolation of phosphorylated target molecules from a complex mixture and aiding in proteomic analysis wherein kinase and phosphatase substrates and enzymes can be identified.
摘要:
The present invention relates to phosphate-binding compounds that find use in binding, detecting and isolating phosphorylated target molecules including the subsequent identification of target molecules that interact with phosphorylated target molecules or molecules capable of being phosphorylated. A binding solution is provide that comprises a phosphate-binding compound, an acid and a metal ion wherein the metal ion simultaneously interacts with an exposed phosphate group on a target molecule and the metal chelating moiety of the phosphate-binding compound forming a bridge between the phosphate-binding compound and a phosphorylated target molecule resulting in a ternary complex. The binding solution of the present invention finds use in binding and detecting immobilized and solubilized phosphorylated target molecules, isolation of phosphorylated target molecules from a complex mixture and aiding in proteomic analysis wherein kinase and phosphatase substrates and enzymes can be identified.
摘要:
The present invention relates to phosphate-binding compounds that find use in binding, detecting and isolating phosphorylated target molecules including the subsequent identification of target molecules that interact with phosphorylated target molecules or molecules capable of being phosphorylated. A binding solution is provide that comprises a phosphate-binding compound, an acid and a metal ion wherein the metal ion simultaneously interacts with an exposed phosphate group on a target molecule and the metal chelating moiety of the phosphate-binding compound forming a bridge between the phosphate-binding compound and a phosphorylated target molecule resulting in a ternary complex. The binding solution of the present invention finds use in binding and detecting immobilized and solubilized phosphorylated target molecules, isolation of phosphorylated target molecules from a complex mixture and aiding in proteomic analysis wherein kinase and phosphatase substrates and enzymes can be identified.
摘要:
The present invention provides methods and fluorescent compounds that facilitate detecting and labeling of a fusion protein by being capable of selectively binding to an affinity tag. The fluorescent compounds have the general formula A(B)n, wherein A is a fluorophore, B is a binding domain that is a charged chemical moiety, a protein or fragment thereof and n is an integer from 1-6 with the proviso that the protein or fragment thereof not be an antibody or generated from an antibody. The present invention provides specific fluorescent compounds and methods used to detect and label fusion proteins that contain a poly-histidine affinity tag. These compounds have the general formula A(L)m(B)n wherein A is a fluorophore, L is a linker, B is an acetic acid binding domain, m is an integer from 1 to 4 and n is an integer from 1 to 6. The acetic acid groups interact directly with the positively charged histidine residues of the affinity tag to effectively label and detect a fusion protein containing such an affinity tag when present in an acidic or neutral environment.
摘要:
The present invention provides methods and fluorescent compounds that facilitate detecting and labeling of a fusion protein by being capable of selectively binding to an affinity tag. The fluorescent compounds have the general formula A(B)n, wherein A is a fluorophore, B is a binding domain that is a charged chemical moiety, a protein or fragment thereof and n is an integer from 1-6 with the proviso that the protein or fragment thereof not be an antibody or generated from an antibody. The present invention provides specific fluorescent compounds and methods used to detect and label fusion proteins that contain a poly-histidine affinity tag. These compounds have the general formula A(L)m(B)n wherein A is a fluorophore, L is a linker, B is an acetic acid binding domain, m is an integer from 1 to 4 and n is an integer from 1 to 6. The acetic acid groups interact directly with the positively charged histidine residues of the affinity tag to effectively label and detect a fusion protein containing such an affinity tag when present in an acidic or neutral environment.
摘要:
The present invention provides methods and fluorescent compounds that facilitate detecting and labeling of a fusion protein by being capable of selectively binding to an affinity tag. The fluorescent compounds have the general formula A(B)n, wherein A is a fluorophore, B is a binding domain that is a charged chemical moiety, a protein or fragment thereof and n is an integer from 1-6 with the proviso that the protein or fragment thereof not be an antibody or generated from an antibody. The present invention provides specific fluorescent compounds and methods used to detect and label fusion proteins that contain a poly-histidine affinity tag. These compounds have the general formula A(L)m(B)n wherein A is a fluorophore, L is a linker, B is an acetic acid binding domain, m is an integer from 1 to 4 and n is an integer from 1 to 6. The acetic acid groups interact directly with the positively charged histidine residues of the affinity tag to effectively label and detect a fusion protein containing such an affinity tag when present in an acidic or neutral environment.
摘要:
The present invention provides ligand-detection reagents, ligand analogs and methods for determining the presence of a ligand in a sample. The ligand-detection reagent comprises a ligand-binding antibody and a ligand analog to form an antibody-ligand analog complex wherein the ligand analog is covalently bonded to a reporter molecule. This complex may additionally comprise a labeling protein non-covalently bonded to the antibody to form a ternary complex wherein the labeling protein comprises a monovalent antibody fragment or a non-antibody protein that is covalently bonded to a label moiety. The reporter molecule is either quenched by the ligand-binding antibody or by the label moiety of the labeling protein, depending on the reporter molecule and the ligand-binding antibody, wherein the amount of quenching is directly related to the amount of ligand present in the sample. Alternatively, the ligand analog is fluorogenic wherein the ligand analog is essentially non-fluorescent in solution but when bound by the ligand-binding antibody the detectable signal increases. In this instance a decrease in signal, as opposed to the relieving of quenching, is measured for the presence of a target ligand.
摘要:
The present invention provides novel reactive fluorescent compounds that incorporate stable isotopic (deuterium, 13-carbon, 15-nitrogen, 18-oxygen) substitutions. The invention includes the use of these compounds, in combination with non-isotopically substituted analogs, for the purification, identification and relative quantification of proteins, peptides, saccharides, metabolites, and other biologically important compounds by combining liquid chromatography (LC) and mass spectrometry (MS). Fluorescent labeling of target compounds in this manner provides orders-of-magnitude sensitivity enhancement over traditional stable isotope labels, and also affords the possibility of simultaneous multiplexed analysis due to the multiwavelength nature of different fluorophores.
摘要:
The present invention relates to phosphate-binding compounds that find use in binding, detecting and isolating phosphorylated target molecules including the subsequent identification of target molecules that interact with phosphorylated target molecules or molecules capable of being phosphorylated. A binding solution is provide that comprises a phosphate-binding compound, an acid and a metal ion wherein the metal ion simultaneously interacts with an exposed phosphate group on a target molecule and the metal chelating moiety of the phosphate-binding compound forming a bridge between the phosphate-binding compound and a phosphorylated target molecule resulting in a ternary complex. The binding solution of the present invention finds use in binding and detecting immobilized and solubilized phosphorylated target molecules, isolation of phosphorylated target molecules from a complex mixture and aiding in proteomic analysis wherein kinase and phosphatase substrates and enzymes can be identified.