Abstract:
A method is disclosed whereby an inexpensive integrated circuit is provided for use in high volume electronic consumer devices of different makes, wherein each different make must perform a different special function. A common function required in all the different makes is realized in a substantially non-customizable portion. A dense mask-programmable portion is provided for realizing a special function. Interface circuitry is provided that enables an external FPGA to perform the special function at system operating speeds during system development. After system development, the circuitry implemented in the external FPGA is technology-mapped to the mask-programmable portion. A single mask is fashioned such that versions of the integrated circuit are produced with their mask-programmable portions customized to perform the special function. I/O terminals that were used to couple to the external FPGA during system development are usable during normal operation to provide system board access to circuitry within the mask-programmable portion.
Abstract:
A display processor integrated circuit (for example, for a television or for a digital camera) includes a display processor portion and an on-chip programmable logic portion. The on-chip programmable logic portion can be configured or programmed to implement custom video and/or image enhancement functions. Accordingly, an individual television or camera manufacturer can have his/her own custom enhancement function incorporated into the display processor integrated circuit by having the programmable logic portion configured or programmed appropriately. In one embodiment, the programming of the programmable logic portion involves changing just one mask, thereby reducing the cost, complexity and time associated with implementing the custom video/image enhancement function.
Abstract:
A protection circuit prevents a current spike in a logic module in a field programmable gate array during power up of the gate array. The protection circuit supplies a voltage onto an internal disable input of the logic module during power up until a voltage output by a charge pump reaches a predetermined voltage. The voltage on the internal disable input turns off transistor(s) in the logic module and prevents the current spike. When the voltage output by the charge pump reaches the predetermined voltage, the protection circuit no longer supplies the voltage to the logic module's internal disable input.
Abstract:
A field programmable gate array includes a programmable routing network, a programmable configuration network integrated with the programmable routing network; and a logic cell integrated with the programmable configuration network. The logic cell includes four two-input AND gates, two six-input AND gates, three multiplexers, and a delay flipflop. The logic cell is a powerful general purpose universal logic building block suitable for implementing most TTL and gate array macrolibrary functions. A considerable variety of functions are realizable with one cell delay, including combinational logic functions as wide as thirteen inputs, all boolean transfer functions for up to three inputs, and sequential flipflop functions such as T, JK and count with carry-in.
Abstract:
A field programmable gate array includes a programmable routing network, a programmable configuration network integrated with the programmable routing network; and a plurality of logic cells ("modules") integrated with the programmable configuration network. Each logic cell is a powerful general purpose universal logic building block. Each logic cell consists essentially of four two-input AND gates, one or two six-input AND gates, three multiplexers, and a D-type flipflop.
Abstract:
A field programmable gate array includes a programmable routing network, a programmable configuration network integrated with the programmable routing network; and a logic cell integrated with the programmable configuration network. The logic cell includes four two-input AND gates, two six-input AND gates, three multiplexers, and a delay flipflop. The logic cell is a powerful general purpose universal logic building block suitable for implementing most TTL and gate array macrolibrary functions. A considerable variety of functions are realizable with one cell delay, including combinational logic functions as wide as thirteen inputs, all boolean transfer functions for up to three inputs, and sequential flipflop functions such as T, JK and count with carry-in.
Abstract:
A display processor integrated circuit includes a display processor portion and an on-chip programmable logic portion. The programmable logic portion can be configured to implement custom video and/or image enhancement functions. The display processor portion performs block-based motion detection. If no motion is detected for a given block of pixels, then interline gaps in the block are filled using temporal interpolation. If motion is detected, then interline gaps are filled using spatial interpolation. To maintain accuracy without unduly increasing computational complexity, a less complex high angle spatial interpolation method is employed where a low angle tilt condition is not detected. A more computationally intensive low angle spatial interpolation method can therefore be employed in low angle tilt conditions. Integrated circuit cost is reduced by employing pipelining to write parts of segment buffers at the same time that other parts are being read to perform the interpolation process.
Abstract:
A field programmable gate array includes a programmable interconnect structure and plurality of logic cells. The logic cells each include a number of combinatorial logic circuits, which have direct interconnections with the programmable interconnect structure, and a plurality of sequential logic element, such as D type flip-flops that acts as registers. The combinatorial logic circuits may be directly connected to the programmable interconnect structure as well as connected to the input terminals of the sequential logic elements. Consequently, the logic cells include both combinatorial and registered connections with the programmable interconnect structure. Moreover, one of the sequential elements may selectively receive a dedicated input from the programmable interconnect structure. The output leads of the logic cell is connected to the programmable interconnect structure through a driver that includes a protection transistor. The gate of the protection transistor is coupled to a primary charge pump that is shared with multiple drivers as well as a secondary charge pump associated with the driver.
Abstract:
A field programmable gate array has a security antifuse which when programmed prevents readout of data indicative of how the interconnect structure is programmed but which does not prevent readout of data indicative of which other antifuses are programmed. In some embodiments, the programming control shift registers adjacent the left and right sides are the field programmable gate array are disabled when the security antifuse is programmed but the programming control shift registers adjacent the top and bottom sides of the field programmable gate array are not disabled. A second security antifuse is also provided which when programmed disables a JTAG boundary scan register but does not disable a JTAG bypass register. Information can therefore be shifted through the JTAG test circuitry without allowing the JTAG circuitry to be used to extract information indicative of how the interconnect structure is programmed. Logic module and interface cell scan paths are provided and special test instructions are supported which allow test vectors to be loaded into the logic module and interface cell scan paths.
Abstract:
In one method for forming amorphous silicon antifuses with significantly reduced leakage current, a film of amorphous silicon is formed in a antifuse via between two electrodes. The amorphous silicon film is deposited using plasma enhanced chemical vapor deposition, preferably in an silane-argon environment and at a temperature between 200 and 500 degrees C., or reactively sputtered in a variety of reactive gases. In another method, an oxide layer is placed between two amorphous silicon film layers. In yet another method, one of the amorphous silicon film layers about the oxide layer is doped. In another embodiment, a layer of conductive, highly diffusible material is formed either on or under the amorphous silicon film. The feature size and thickness of the amorphous silicon film are selected to minimize further the leakage current while providing the desired programming voltage. A method also is described for for forming a field programmable gate array with antifuses.