Abstract:
A method and system of temperature compensated integrated circuits. Operating characteristics of integrated circuitry are enhanced by application of temperature compensation.
Abstract:
An integrated circuit with body-bias inputs coordinated by a switch at initial power application. A switch coupled to the N-well bias and P-type substrate bias lines of an integrated circuit selectively couples the substrate to ground or the substrate bias supply, depending upon the state of the bias supply lines. During power-up and the initial application of the N-well bias, the substrate is coupled to ground to prevent a leakage induce rise in the substrate potential. Upon sensing the presence of the substrate bias potential on the substrate bias line, the switch couples the substrate to the substrate bias line instead of ground. In another embodiment, a switch indirectly senses the availability of the substrate bias potential by sensing a charge pump enable signal.
Abstract:
A method and system of temperature compensated integrated circuits. Operating characteristics of integrated circuitry are enhanced by application of temperature compensation.
Abstract:
An integrated circuit device having a body bias voltage mechanism. The integrated circuit comprises a resistive structure disposed therein for selectively coupling either an external body bias voltage or a power supply voltage to biasing wells. A first pad for coupling with a first externally disposed pin can optionally be provided. The first pad is for receiving an externally applied body bias voltage. Circuitry for producing a body bias voltage can be coupled to the first pad for coupling a body bias voltage to a plurality of biasing wells disposed on the integrated circuit device. If an externally applied body bias voltage is not provided, the resistive structure automatically couples a power supply voltage to the biasing wells. The power supply voltage may be obtained internally to the integrated circuit.
Abstract:
A method for making a chrome photo-mask is disclosed. A photo-mask blank is activated with activator on its upper surface for electroless chrome plating Next, the activated photo-mask blank is then immersed in the electroless chrome plating solution for being coated with a thin chrome layer. The electroless chrome plating process will continue until a desired thickness is formed. Preferably, an electro-plating process is employed after the growth of an initial electroless chrome layer. Then, the photo-mask blank with the chrome layer is subject to oxidation for forming an antireflection layer on the chrome layer. After the antireflective layer is successively formed, a resist film is formed on the antireflective layer. The resist film is then patterned in accordance with the predetermined pattern. Next, the antireflective layer and the chromium layer are dry-etched or wet-etched through openings in the patterned resist film. The resist film is subsequently stripped to form the desired photo-mask.
Abstract:
A method and system of voltage compensated integrated circuits. Operating characteristics of integrated circuitry are enhanced by application of voltage compensation.
Abstract:
An integrated circuit device having a body bias voltage mechanism. The integrated circuit comprises a resistive structure disposed therein for selectively coupling either an external body bias voltage or a power supply voltage to biasing wells. A first pad for coupling with a first externally disposed pin can optionally be provided. The first pad is for receiving an externally applied body bias voltage. Circuitry for producing a body bias voltage can be coupled to the first pad for coupling a body bias voltage to a plurality of biasing wells disposed on the integrated circuit device. If an externally applied body bias voltage is not provided, the resistive structure automatically couples a power supply voltage to the biasing wells. The power supply voltage may be obtained internally to the integrated circuit.
Abstract:
A drive frequency source with two selectable output frequencies connected to two charge pump arrays. A first array of basic charge pump units is connected to the first output frequency and a second array of basic charge pump units is connected to the output frequency. One or more of the basic charge pump units making up the aforementioned first and second charge pump arrays has an enable input allowing its output current contribution to be added or subtracted from the total array output. The output of the first array is coupled to a P-type substrate and the output of the second array is coupled to an N-well residing in the P-type substrate. A controller may be coupled to the drive frequency source for selecting the output frequencies, and an output monitor may be coupled between the array outputs and the controller to provide feedback.
Abstract:
An integrated circuit with body-bias inputs coordinated by a switch at initial power application. A switch coupled to the N-well bias and P-type substrate bias lines of an integrated circuit selectively couples the substrate to ground or the substrate bias supply, depending upon the state of the bias supply lines. During power-up and the initial application of the N-well bias, the substrate is coupled to ground to prevent a leakage induce rise in the substrate potential. Upon sensing the presence of the substrate bias potential on the substrate bias line, the switch couples the substrate to the substrate bias line instead of ground. In another embodiment, a switch indirectly senses the availability of the substrate bias potential by sensing a charge pump enable signal.
Abstract:
An integrated circuit with body-bias inputs coordinated by a switch at initial power application. A switch coupled to the N-well bias and P-type substrate bias lines of an integrated circuit selectively couples the substrate to ground or the substrate bias supply, depending upon the state of the bias supply lines. During power-up and the initial application of the N-well bias, the substrate is coupled to ground to prevent a leakage induce rise in the substrate potential. Upon sensing the presence of the substrate bias potential on the substrate bias line, the switch couples the substrate to the substrate bias line instead of ground. In another embodiment, a switch indirectly senses the availability of the substrate bias potential by sensing a charge pump enable signal.