Abstract:
One or more liquids are transferred from a source array to one or more remotely positioned destination sites such as chambers by utilizing one or more movable transfer elements, such as contact pins or capillaries. The source array may include a predetermined organization of addresses at which materials are positioned. One or more materials may be selected for transfer. Based on the selection, one or more addresses may be accessed by the transfer element(s). The addresses may correspond to spots on a surface of the source array. Each spot may be a feature containing one or more (bio)chemical compounds. At the chamber(s), the material(s) may be processed, such by reaction with one or more reagents. The reaction(s) may entail synthesis of one or more desired products. Alternatively, reaction(s) may be performed at the source array, and the product(s) then transferred to the chamber(s).
Abstract:
One or more liquids are transferred from a source array to one or more remotely positioned destination sites such as chambers by utilizing one or more movable transfer elements, such as contact pins or capillaries. The source array may include a predetermined organization of addresses at which materials are positioned. One or more materials may be selected for transfer. Based on the selection, one or more addresses may be accessed by the transfer element(s). The addresses may correspond to spots on a surface of the source array. Each spot may be a feature containing one or more (bio)chemical compounds. At the chamber(s), the material(s) may be processed, such by reaction with one or more reagents. The reaction(s) may entail synthesis of one or more desired products. Alternatively, reaction(s) may be performed at the source array, and the product(s) then transferred to the chamber(s).
Abstract:
A method for measuring a property of a binding interaction between a capture agent and a binding partner for the capture agent is provided. In certain embodiments, this method comprises: a) contacting a population of particles that are linked to a capture agent with a substrate comprising a binding partner to produce capture agent/binding partner complexes, wherein the population of particles comprises first particles that are bound to a single molecule of the capture agent and second particles that are bound to two molecules of the capture agent; b) applying a force to the bound support, wherein the force is in a direction that separates the particles from the support; and c) separately measuring the forces required to disassociate the first particles and the second particles from their respective complexes.
Abstract:
A fluid delivery device is configured to create a pressure differential across a compartment in which a liquid resides, causing the liquid to flow through the compartment. After a period of time, the fluid delivery device is configured to eliminate the pressure differential and thereby equilibrate the pressure across the compartment, with the use of a pressure equilibration channel that is separate from the compartment. The compartment may contain a packed bed of solid phase particles such as beads. In such case, the pressure differential causes the liquid to flow through the packed bed. The liquid may include chemical reagents or precursors that participate in chemical reactions on or at the solid phase particles. The reactions may relate to chemical synthesis, for example the synthesis of bio-chemicals such as nucleotides.
Abstract:
This disclosure provides, among other things, a nanofluidic device sensing device is provided. In certain embodiments, the device contains: a) a channel comprising a floor and a ceiling, b) an array of charge sensors in the floor and/or ceiling of the channel, arranged along the longitudinal axis of the channel; c) a capture area in the floor and/or ceiling of the channel at the entrance end of the channel; and d) a first electrode and a second electrode, wherein the first and second electrodes are positioned to provide an electrophoretic force along the longitudinal axis of the channel. Other embodiments, e.g., methods, are also described.
Abstract:
Provided herein, among other things, is a method comprising: (a) obtaining a mixture of multiple sets of oligonucleotides, wherein the oligonucleotides within each set each comprise a terminal indexer sequence can be assembled to produce a synthon; and (b) hybridizing the oligonucleotide mixture to an array, thereby spatially-separating the different sets of oligonucleotides from one another. Other embodiments are also provided.
Abstract:
A method for measuring a property of a binding interaction between a capture agent and a binding partner for the capture agent is provided. In certain embodiments, this method comprises: a) contacting a population of particles that are linked to a capture agent with a substrate comprising a binding partner to produce capture agent/binding partner complexes, wherein the population of particles comprises first particles that are bound to a single molecule of the capture agent and second particles that are bound to two molecules of the capture agent; b) applying a force to the bound support, wherein the force is in a direction that separates the particles from the support; and c) separately measuring the forces required to disassociate the first particles and the second particles from their respective complexes.
Abstract:
This disclosure provides, among other things, a nanofluidic device sensing device is provided. In certain embodiments, the device contains: a) a channel comprising a floor and a ceiling, b) an array of charge sensors in the floor and/or ceiling of the channel, arranged along the longitudinal axis of the channel; c) a capture area in the floor and/or ceiling of the channel at the entrance end of the channel; and d) a first electrode and a second electrode, wherein the first and second electrodes are positioned to provide an electrophoretic force along the longitudinal axis of the channel. Other embodiments, e.g., methods, are also described.