Abstract:
A mask assembly suitable for use in a lithographic process, the mask assembly comprising a patterning device; and a pellicle frame configured to support a pellicle and mounted on the patterning device with a mount; wherein the mount is configured to suspend the pellicle frame relative to the patterning device such that there is a gap between the pellicle frame and the patterning device; and wherein the mount provides a releasably engageable attachment between the patterning device and the pellicle frame.
Abstract:
A diagnostic apparatus monitors a lithographic manufacturing system. First measurement data representing local deviations of some characteristic across a substrate is obtained using sensors within a lithographic apparatus, and/or a separate metrology tool. Other inspection tools perform substrate backside inspection to produce second measurement data. A high-resolution backside defect image is processed into a form in which it can be compared with lower resolution information from the first measurement data. Cross-correlation is performed to identify which of the observed defects are correlated spatially with the deviations represented in the first measurement data. A correlation map is used to identify potentially relevant clusters of defects in the more detailed original defect map. The responsible apparatus can be identified by pattern recognition as part of an automated root cause analysis. Alternatively, reticle inspection data may be used as second measurement data.
Abstract:
A lithographic apparatus includes a first object holder and a second object holder. The first object holder is arranged to hold an object at a holder-facing surface. The object has the holder-facing surface. The second object holder is arranged to hold the object at the holder-facing surface. The lithographic apparatus is arranged to deform a contaminating particle at the holder-facing surface more when the object is held at the second object holder than when the object is held at the first object holder.
Abstract:
An immersion lithographic projection apparatus is disclosed in which liquid is provided between a projection system of the apparatus and a substrate. The use of both liquidphobic and liquidphilic layers on various elements of the apparatus is provided to help prevent formation of bubbles in the liquid and to help reduce residue on the elements after being in contact with the liquid.
Abstract:
A mask assembly suitable for use in a lithographic process, the mask assembly comprising a patterning device; and a pellicle frame configured to support a pellicle and mounted on the patterning device with a mount; wherein the mount is configured to suspend the pellicle frame relative to the patterning device such that there is a gap between the pellicle frame and the patterning device; and wherein the mount provides a releasably engageable attachment between the patterning device and the pellicle frame.
Abstract:
A lithographic apparatus is disclosed that includes a projection system, and a liquid confinement structure configured to at least partly confine immersion liquid to an immersion space defined by the projection system, the liquid confinement structure and a substrate and/or substrate table. Measures are taken in the lithographic apparatus, for example, to reduce the effect of droplets on the final element of the projection system or to substantially avoid such droplet formation.
Abstract:
A diagnostic apparatus monitors a lithographic manufacturing system. First measurement data representing local deviations of some characteristic across a substrate is obtained using sensors within a lithographic apparatus, and/or a separate metrology tool. Other inspection tools perform substrate backside inspection to produce second measurement data. A high- resolution backside defect image is processed into a form in which it can be compared with lower resolution information from the first measurement data. Cross-correlation is performed to identify which of the observed defects are correlated spatially with the deviations represented in the first measurement data. A correlation map is used to identify potentially relevant clusters of defects in the more detailed original defect map. The responsible apparatus can be identified by pattern recognition as part of an automated root cause analysis. Alternatively, reticle inspection data may be used as second measurement data.
Abstract:
An immersion lithographic projection apparatus is disclosed in which liquid is provided between a projection system of the apparatus and a substrate. The use of both liquidphobic and liquidphilic layers on various elements of the apparatus is provided to help prevent formation of bubbles in the liquid and to help reduce residue on the elements after being in contact with the liquid.
Abstract:
A lithographic apparatus is disclosed that includes a projection system, and a liquid confinement structure configured to at least partly confine immersion liquid to an immersion space defined by the projection system, the liquid confinement structure and a substrate and/or substrate table. Measures are taken in the lithographic apparatus, for example, to reduce the effect of droplets on the final element of the projection system or to substantially avoid such droplet formation.
Abstract:
A radiation source for a lithographic apparatus, in particular a laser-produced plasma source includes a fan unit surrounding but not obstructing the collected radiation beam that is operated to generate a flow in a buffer gas away from the optical axis. The fan unit can include a plurality of flat or curved blades generally parallel to the optical axis and driven to rotate about the optical axis.