Abstract:
Methods and apparatuses for processing lithium batteries with a laser source having a wide process window, high efficiency, and low cost are provided. The laser source is adapted to achieve high average power and a high frequency of picosecond pulses. The laser source can produce a line-shaped beam either in a fixed position or in scanning mode. The system can be operated in a dry room or vacuum environment. The system can include a debris removal mechanism, for example, inert gas flow, to the processing site to remove debris produced during the patterning process.
Abstract:
A layer stack for a touch panel is described. The layer stack includes a substrate including a polymer for depositing one or more layers on the substrate; a patterned transparent conductive oxide (TCO) layer provided over the substrate, which comprises areas of TCO and gaps between the areas of TCO; a first dielectric material provided in the gaps of the patterned TCO layer and a dielectric layer being deposited directly on the TCO areas of the TCO layer and directly on the first dielectric material. Further, a touch panel including a layer stack and a method for forming a layer stack for a touch panel is described.
Abstract:
A deposition apparatus for coating a flexible substrate is described. The deposition apparatus comprises a first spool chamber housing a storage spool for providing the flexible substrate, a deposition chamber arranged downstream from the first spool chamber, and a second spool chamber arranged downstream from the deposition chamber and housing a wind-up spool for winding the flexible substrate thereon after deposition. The deposition chamber comprises a coating drum for guiding the flexible substrate past a plurality of deposition units including at least one deposition unit having a graphite target. The coating drum is connected to a device for applying an electrical potential to the coating drum.
Abstract:
A method (100) of cooling a deposition source (200) is described. The method includes stopping (110) depositing material from the deposition source, the deposition source being arranged in a deposition chamber (250), and introducing (120) a cooling gas into the deposition chamber (250), the cooling gas comprising a thermal conductivity λ of λ≥0.05 [W/(m*K)]. Further, a chamber for cooling a deposition source is described. The chamber includes a deposition source being arranged in the chamber. Further, the chamber includes a cooling gas supply system configured for providing a cooling gas into the chamber, the cooling gas comprising a thermal conductivity λ of λ≥0.05 [W/(m*K)].
Abstract:
A method for controlling a gas supply to a process chamber is provided. The method includes: measuring a gas parameter by each of two or more sensors provided in the process chamber; determining a combined gas parameter from the measured gas parameters; and controlling the gas supply to the process chamber based on the determined combined gas parameter.
Abstract:
A process for manufacturing a transparent body for a touch screen panel is described. The process includes: depositing a first transparent layer stack over a flexible transparent substrate, wherein said first transparent layer stack includes at least a first dielectric film with a first refractive index, and a second dielectric film with a second refractive index different from the first refractive index; providing a transparent conductive film over the first transparent layer stack; depositing a layer of a conductive material over the transparent conductive film; providing a polymer layer over the layer of a conductive material; imprinting a pattern, e.g. a 3D pattern, on the polymer layer; etching the layer of the conductive material based upon the pattern to form conductive paths for the touch screen panel; and etching the transparent conductive film based upon the pattern to form a structured transparent conductive pattern for touch detection.
Abstract:
A roller for transporting a flexible substrate is described. The roller includes a main body having a plurality of gas supply slits provided in an outer surface of the main body. The plurality of gas supply slits extends in a direction of a central rotation axis of the roller. Further, the roller includes a sleeve provided circumferentially around and in contact with the main body. The sleeve has a plurality of gas outlets extending in a radial direction (R) and being provided above the plurality of gas supply slits.
Abstract:
A roller for transporting a flexible substrate is described. The roller includes a main body having a plurality of gas supply slits provided in an outer surface of the main body. The plurality of gas supply slits extends in a direction of a central rotation axis of the roller. Further, the roller includes a sleeve provided circumferentially around and in contact with the main body. The sleeve has a plurality of gas outlets being provided above the plurality of gas supply slits. Further, the sleeve includes a metal layer embedded within isolating material.
Abstract:
An evaporation source for depositing an evaporated material on a substrate is described. The evaporation source includes an evaporation crucible for evaporating a material; a vapor distributor with a plurality of nozzles for directing the evaporated material toward the substrate; a vapor conduit extending in a conduit length direction (A) from the evaporation crucible to the vapor distributor and providing a fluid connection between the evaporation crucible and the vapor distributor, wherein at least one nozzle of the plurality of nozzles has a nozzle axis extending in, or essentially parallel to, the conduit length direction (A); and a baffle arrangement in the vapor conduit. Further described are a vapor deposition apparatus including such an evaporation source and methods of coating a substrate in a vacuum chamber.
Abstract:
A deposition apparatus for coating a flexible substrate is described. The deposition apparatus includes a first spool chamber housing a storage spool for providing the flexible substrate, a deposition chamber arranged downstream from the first spool chamber, and a second spool chamber arranged downstream from the deposition chamber and housing a wind-up spool for winding the flexible substrate thereon after deposition. The deposition chamber includes a coating drum for guiding the flexible substrate past a plurality of deposition units including at least one deposition unit having a graphite target. Further, the deposition chamber includes a coating treatment device configured to densify a layer deposited on the flexible substrate.