Abstract:
The present invention provides a structure of a resistor comprising: a substrate having an interfacial layer thereon; a resistor trench formed in the interfacial layer; at least a work function metal layer covering the surface of the resistor trench; at least two metal bulks located at two ends of the resistor trench and adjacent to the work function metal layer; and a filler formed between the two metal bulks inside the resistor trench, wherein the metal bulks are direct in contact with the filler.
Abstract:
The present invention provides a structure of a resistor comprising: a substrate having an interfacial layer thereon; a resistor trench formed in the interfacial layer; at least a work function metal layer covering the surface of the resistor trench; at least two metal bulks located at two ends of the resistor trench and adjacent to the work function metal layer; and a filler formed between the two metal bulks inside the resistor trench, wherein the metal bulks are direct in contact with the filler.
Abstract:
A lamp rotating device to change a lighting angle includes a light tube, a lighting module, two fixed ends and two rotating parts, an open is on both ends of the light tube, two fixed ends each is installed on one open, each of the rotating part is installed between the fixed end and the open respectively, one side of the rotating part interferes with light tube to have the light tube rotate along the fixed end by the movements of rotating part, and change a lighting angle.
Abstract:
A method of manufacturing a semiconductor device having metal gate includes providing a substrate having a semiconductor device and a contact etch stop layer (CESL) and a dielectric layer covering the semiconductor device formed thereon, wherein the semiconductor device having at least a dummy gate, performing a dummy gate removal step to form at least an opening in the semiconductor device and to simultaneously remove a portion of the CESL such that a top surface of the CESL is lower than the semiconductor device and the dielectric layer and a plurality of recesses is obtained, and performing a recess elimination step to form a substantially even surface of the dielectric layer.
Abstract:
A semiconductor process includes the following steps. A first gate structure and a second gate structure are formed on a substrate, wherein the top of the first gate structure includes a cap layer, so that the vertical height of the first gate structure is higher than the vertical height of the second gate structure. An interdielectric layer is formed on the substrate. A first chemical mechanical polishing process is performed to expose the top surface of the cap layer. A second chemical mechanical polishing process is performed to expose the top surface of the second gate structure or an etching process is performed to remove the interdielectric layer located on the second gate structure. A second chemical mechanical polishing process is then performed to remove the cap layer.
Abstract:
The present invention provides a method of manufacturing semiconductor device having metal gates. First, a substrate is provided. A first conductive type transistor having a first sacrifice gate and a second conductive type transistor having a second sacrifice gate are disposed on the substrate. The first sacrifice gate is removed to form a first trench. Then, a first metal layer is formed in the first trench. The second sacrifice gate is removed to form a second trench. Next, a second metal layer is formed in the first trench and the second trench. Lastly, a third metal layer is formed on the second metal layer wherein the third metal layer is filled into the first trench and the second trench.
Abstract:
The invention relates to a virtual I/O device coupled to a memory controller in a microprocessor of computer, the virtual I/O device and a memory unit being in communication with the memory controller via a common interface so that any of a plurality of peripherals is capable of coupling to an arithmetic and logic unit (ALU) in the microprocessor via the virtual I/O device and the memory controller sequentially, and an excessive time spent on a processing of request and acknowledgement in handshake while packets being received or transmitted between a conventional I/O device and the I/O interface in the microprocessor is significantly reduced.
Abstract:
The present invention provides a method of manufacturing semiconductor device having metal gates. First, a substrate is provided. A first conductive type transistor having a first sacrifice gate and a second conductive type transistor having a second sacrifice gate are disposed on the substrate. The first sacrifice gate is removed to form a first trench. Then, a first metal layer is formed in the first trench. The second sacrifice gate is removed to form a second trench. Next, a second metal layer is formed in the first trench and the second trench. Lastly, a third metal layer is formed on the second metal layer wherein the third metal layer is filled into the first trench and the second trench.
Abstract:
A semiconductor device having a metal gate includes a substrate having a plurality of shallow trench isolations (STIs) formed therein, at least a metal gate positioned on the substrate, and at least a pair of auxiliary dummy structures respectively positioned at two sides of the metal gate and on the substrate.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a transistor region and a resistor region; forming a shallow trench isolation (STI) on the substrate of the resistor region; forming a tank in the STI of the resistor region; and forming a resistor in the tank and on the surface of the STI adjacent to two sides of the tank.