摘要:
Methods of removing odors, particularly odors within enclosed environments are provided which employ nanocrystalline metal oxide and metal hydroxide particles. The nanocrystalline particles are dispersed within an enclosed space so as to contact exposed surfaces located within the space such as walls, floors, upholstery, and the like and adsorb odor-causing materials located within the enclosed space.
摘要:
Pelletized adsorbent compositions and methods of adsorbing toxic target compounds are provided for the destructive adsorption or chemisorption of toxic or undesired compounds. The pelletized adsorbents are formed by pressing together powder nanocrystalline particles comprising a metal hydroxide or a metal oxide at pressures of from about 50 psi to about 6000 psi to form discrete self-sustaining bodies. The pelletized bodies should retain at least about 25% of the surface area/unit mass and total pore volume of the starting metal particles.
摘要:
Pelletized adsorbent compositions and methods of adsorbing toxic target compounds are provided for the destructive adsorption or chemisorption of toxic or undesired compounds. The pelletized adsorbents are formed by pressing together powder nanocrystalline particles comprising a metal hydroxide or a metal oxide at pressures of from about 50 psi to about 6000 psi to form discrete self-sustaining bodies. The pelletized bodies should retain at least about 25% of the surface area/unit mass and total pore volume of the starting metal particles.
摘要:
The invention provides a sorptive sheet material in which finely divided nanocrystalline particles that react with a variety of chemical and/or biological agents are dispersed. The sheet material comprises a fibrous web that is formed of a plurality of fibers that are bonded to each other. The fibrous web contains a relatively high concentration of reactive nanocrystalline particles that are entrapped within the matrix of the fibrous web. Fluids containing toxic agents, such as chemical and/or biological agents, odors and/or odor causing compounds, and toxic industrial compounds, pass into the web and contact the reactive nanocrystalline particles contained therein. The reactive nanocrystalline particles react with, and chemically alter or inactivate the toxic agents. The sorptive sheet material may be used to construct containers, such as remains pouches, for the storing and transporting of contaminated items, particularly human remains.
摘要:
The invention provides a sorptive sheet material in which finely divided nanocrystalline particles that react with a variety of chemical and/or biological agents are dispersed. The sheet material comprises a fibrous web that is formed of a plurality of fibers that are bonded to each other. The fibrous web contains a relatively high concentration of reactive nanocrystalline particles that are entrapped within the matrix of the fibrous web. Fluids containing toxic agents, such as chemical and/or biological agents, odors and/or odor causing compounds, and toxic industrial compounds, pass into the web and contact the reactive nanocrystalline particles contained therein. The reactive nanocrystalline particles react with, and chemically alter or inactivate the toxic agents. The sorptive sheet material may be used to construct containers, such as remains pouches, for the storing and transporting of contaminated items, particularly human remains.
摘要:
Compositions and methods for destroying biological agents and toxins such as Aflatoxins, Botulinum toxins, and Clostridium perfrigens toxins are provided wherein the substance to be destroyed is contacted with a finely divided metal oxide nanocrystals. In various embodiments, the metal oxide nanocrystals have reactive atoms stabilized on their surfaces, species adsorbed on their surfaces, or are coated with a second metal oxide. The desired metal oxide nanocrystals can be pressed into pellets for use when a powder is not feasible. The methods of the invention are safe for humans, equipment, and the environment, and provide for decontamination of warfare sites, of equipment exposed to the contaminant, and of soil, water and air having been exposed to the contaminant. Preferred metal oxides for the methods include MgO, CaO, TiO2, ZrO2, FeO, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, ZnO and mixtures thereof. Preferred reactive atoms stabilized on the surfaces of the metal oxide nanocrystals include halogens and Group I metals, and preferred species stabilized on the surfaces of the metal oxide nanocrystals include SO2, NO2 and ozone.
摘要翻译:提供用于破坏生物制剂和毒素如黄曲霉毒素,肉毒杆菌毒素和梭菌毒素毒素的组合物和方法,其中待破坏的物质与细碎的金属氧化物纳米晶体接触。 在各种实施方案中,金属氧化物纳米晶体在其表面上具有稳定的反应性原子,吸附在其表面上的物质或用第二金属氧化物涂覆。 当粉末不可行时,所需的金属氧化物纳米晶体可以压制成颗粒使用。 本发明的方法对于人类,设备和环境是安全的,并且对于暴露于污染物的设备以及已经暴露于污染物的土壤,水和空气的作战地点,设备的去污, 用于该方法的优选金属氧化物包括MgO,CaO,TiO 2,ZrO 2,FeO,V 2 O 5,Mn 2 O 3,Fe 2 O 3,NiO,CuO,Al 2 O 3,ZnO及其混合物。 在金属氧化物纳米晶体的表面上稳定的优选的反应性原子包括卤素和第I族金属,并且在金属氧化物纳米晶体的表面上稳定的优选物质包括SO 2,NO 2和臭氧。
摘要:
Methods of removing odors, particularly odors within enclosed environments are provided which employ nanocrystalline metal oxide and metal hydroxide particles. The nanocrystalline particles are dispersed within an enclosed space so as to contact exposed surfaces located within the space such as walls, floors, upholstery, and the like and adsorb odor-causing materials located within the enclosed space.
摘要:
Apparatus and methods for reducing or eliminating undesirable air-borne substances, such as odors, bacteria, viruses, fungi, and toxins, are provided. A filter containing nanocrystalline metal oxide or metal hydroxide particles may be installed within an air handling apparatus such as an existing HVAC unit located within a building, and particularly within a home, or a portable air processor or purifier. The air handling apparatus comprises a blower which pulls air containing various undesirable substances from within the enclosed environment and directs it through a filtering device containing the nanocrystalline particles. The undesirable substances are sorbed by the nanocrystalline particles thereby creating a deodorized stream of air that may then be directed back into various portions of the enclosed environment or vented to the atmosphere.
摘要:
Compositions and methods for destroying biological agents such as toxins and bacteria are provided wherein the substance to be destroyed is contacted with finely divided metal oxide or hydroxide nanocrystals. In various embodiments, the metal oxide or metal hydroxide nanocrystals have reactive atoms stabilized on their surfaces, species adsorbed on their surfaces, or are coated with a second metal oxide. The desired metal oxide or metal hydroxide nanocrystals can be pressed into pellets for use when a powder is not feasible. Preferred metal oxides for the methods include MgO, SrO, BaO, CaO, TiO2, ZrO2, FeO, V2O3, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, SiO2, ZnO, Ag2O, [Ce(NO3)3—Cu(NO3)2]TiO2, Mg(OH)2, Ca(OH)2, Al(OH)3, Sr(OH)2, Ba(OH)2, Fe(OH)3, Cu(OH)3, Ni(OH)2, Co(OH)2, Zn(OH)2, AgOH, and mixtures thereof.
摘要翻译:提供了用于破坏生物制剂如毒素和细菌的组合物和方法,其中待破坏的物质与细碎的金属氧化物或氢氧化物纳米晶体接触。 在各种实施方案中,金属氧化物或金属氢氧化物纳米晶体在其表面上具有稳定的反应性原子,吸附在其表面上的物质或用第二金属氧化物涂覆。 当粉末不可行时,可以将期望的金属氧化物或金属氢氧化物纳米晶体压制成颗粒使用。 用于该方法的优选金属氧化物包括MgO,SrO,BaO,CaO,TiO 2,ZrO 2,FeO,V 2 O 2, 3个O 2,5个2 O 3,3个O 2,3个3, 3,N 3,NiO,CuO,Al 2 O 3,SiO 2,ZnO,Ag < SUB> 2 ,[Ce(NO 3 3)3 -Cu(NO 3)2 SUB Mg(OH)2,Ca(OH)2,Al(OH)3 3, ,Sr(OH)2,Ba(OH)2,Fe(OH)3,Cu(OH)3, Ni(OH)2,Co(OH)2,Zn(OH)2,AgOH及其混合物。
摘要:
An improved mixed metal oxide material suitable for use in electrochemical cells is provided. The mixed metal oxide material generally exhibits high surface area and pore volume than conventionally manufactured materials thereby imparting improved electrochemical performance. Batteries manufactured using the mixed metal oxide material are particularly suited for use in implantable medical devices.