Abstract:
A transistor structure includes a first type of transistor (e.g., P-type) positioned in a first area of the substrate, and a second type of transistor (e.g., N-type) positioned in a second area of the substrate. A first type of stressing layer (compressive conformal nitride) is positioned above the first type of transistor and a second type of stressing layer (compressive tensile nitride) is positioned above the second type of transistor. In addition, another first type of stressing layer (compressive oxide) is positioned above the first type of transistor. Further, another second type of stressing layer (compressive oxide) is positioned above the second type of transistor.
Abstract:
Compressive or tensile materials are selectively introduced beneath and in alignment with spacer areas and adjacent to channel areas of a semiconductor substrate to enhance or degrade electron and hole mobility in CMOS circuits. A process entails steps of creating dummy spacers, forming a dielectric mandrel (i.e., mask), removing the dummy spacers, etching recesses into the underlying semiconductor substrate, introducing a compressive or tensile material into a portion of each recess, and filling the remainder of each recess with substrate material.
Abstract:
A transistor structure includes a first type of transistor (e.g., P-type) positioned in a first area of the substrate, and a second type of transistor (e.g., N-type) positioned in a second area of the substrate. A first type of stressing layer (compressive conformal nitride) is positioned above the first type of transistor and a second type of stressing layer (compressive tensile nitride) is positioned above the second type of transistor. In addition, another first type of stressing layer (compressive oxide) is positioned above the first type of transistor. Further, another second type of stressing layer (compressive oxide) is positioned above the second type of transistor.
Abstract:
An integrated circuit system is provided including forming a circuit element on a wafer, forming a stress formation layer having a non-uniform profile over the wafer, and forming an interlayer dielectric over the stress formation layer and the wafer.
Abstract:
A field effect transistor (FET) device includes a gate conductor and gate dielectric formed over an active device area of a semiconductor substrate. A drain region is formed in the active device area of the semiconductor substrate, on one side of the gate conductor, and a source region is formed in the active device area of the semiconductor substrate, on an opposite side of the gate conductor. A dielectric halo or plug is formed in the active area of said semiconductor substrate, the dielectric halo or plug disposed in contact between the drain region and a body region, and in contact between the source region and the body region.
Abstract:
A structure and method are provided in which a stress present in a film is reduced in magnitude by oxidizing the film through atomic oxygen supplied to a surface of the film. In an embodiment, a mask is used to selectively block portions of the film so that the stress is relaxed only in areas exposed to the oxidation process. A structure and method are further provided in which a film having a stress is formed over source and drain regions of an NFET and a PFET. The stress present in the film over the source and drain regions of either the NFET or the PFET is then relaxed by oxidizing the film through exposure to atomic oxygen to provide enhanced mobility in at least one of the NFET or the PFET while maintaining desirable mobility in the other of the NFET and PFET.
Abstract:
A method is provided in which a stress present in a film is reduced in magnitude by oxidizing the film through atomic oxygen supplied to a surface of the film. In an embodiment, a mask is used to selectively block portions of the film so that the stress is relaxed only in areas exposed to the oxidation process. A method is further provided in which a film having a stress is formed over source and drain regions of an NFET and a PFET. The stress present in the film over the source and drain regions of either the NFET or the PFET is then relaxed by oxidizing the film through exposure to atomic oxygen to provide enhanced mobility in at least one of the NFET or the PFET while maintaining desirable mobility in the other of the NFET and PFET.
Abstract:
A CMOS structure in which the gate-to-drain/source capacitance is reduced as well as various methods of fabricating such a structure are provided. In accordance with the present invention, it has been discovered that the gate-to-drain/source capacitance can be significantly reduced by forming a CMOS structure in which a low-k dielectric material is self-aligned with the gate conductor. A reduction in capacitance between the gate conductor and the contact via ranging from about 30% to greater than 40% has been seen with the inventive structures. Moreover, the total outer-fringe capacitance (gate to outer diffusion+gate to contact via) is reduced between 10-18%. The inventive CMOS structure includes at least one gate region including a gate conductor located a top a surface of a semiconductor substrate; and a low-k dielectric material that is self-aligned to the gate conductor.
Abstract:
In the course of forming the collar dielectric in a DRAM cell having a deep trench capacitor, a number of filling and stripping steps required in the prior art are eliminated by the use of a spin-on material that can withstand the high temperatures required in front-end processing and also provide satisfactory filling ability and etch resistance. The use of atomic layer deposition for the formation of the collar dielectric reduces the need for a high temperature anneal of the fill material and reduces the amount of outgassing or cracking.
Abstract:
In producing complementary sets of metal-oxide-semiconductor (CMOS) field effect transistors, including nFET and pFET), carrier mobility is enhanced or otherwise regulated through the reacting the material of the gate electrode with a metal to produce a stressed alloy (preferably CoSi2, NiSi, or PdSi) within a transistor gate. In the case of both the nFET and pFET, the inherent stress of the respective alloy results in an opposite stress on the channel of respective transistor. By maintaining opposite stresses in the nFET and pFET alloys or silicides, both types of transistors on a single chip or substrate can achieve an enhanced carrier mobility, thereby improving the performance of CMOS devices and integrated circuits.