Abstract:
The present invention relates to chemically bonded ceramic biomaterials, especially a dental material or an implant material. The main binder system forms a chemically bonded ceramic upon hydration thereof, and comprises powdered calcium aluminate and/or calcium silicate, and phase(s) to secure apatite formation at a pH close to neutrality. A second binder system—a cross-linking organic binder system which provides for initial crosslinking of the freshly mixed paste is advantageously added. The invention relates to a powdered composition for preparing the inventive chemically bonded ceramic biomaterial, and a paste from which the biomaterial is formed, as well as a kit comprising the powdered composition and hydration liquid, as well as methods and use of the biomaterial in dental and implant applications with the aim of remineralisation, integration and bone repair.
Abstract:
A dental cement system, including an aqueous hydration liquid and a powdered material that essentially consists of an inorganic cement system, which powdered material has the capacity to form a complex, chemically bonded material with inorganic as well as organic phases with properties suitable for cementation of implant to another implant and/or to tooth or bone tissue.
Abstract:
A system for a dental filling material or an implant material, alternatively a system for bonding between a tooth or a bone and a dental filling material and a implant material, respectively, which system comprises a water based hydration liquid and a powdered material, the binder phase of which powdered material essentially consisting of a calcium based cement system, which powdered material has the capacity following saturation with the liquid reacting with the binder phase to hydrate to a chemically bonded ceramic material. According to the invention, said powdered material and/or said hydration liquid comprises water soluble phosphate or a phase that has the capacity to form water soluble phosphate, whereby the system exhibits the capacity during hydration to form apatite. The invention also relates to the powdered material and the hydration liquid as such, an implant material and a method of achieving bonding.
Abstract:
The present invention deals with the initial hydration reaction of highly alkaline chemically bonded ceramic systems such as Ca-aluminate and Ca-silicate, exhibiting a controlled pH development, reduced from very high levels to be in a pH range of 7-9 by the use of an internal buffer system added to the CBC type biomaterial used. The invention is especially intended for endodontic, orthopaedic applications and/or soft tissue applications and/or drug delivery carrier applications.
Abstract:
A chemically bonded biomaterial element composed of an inorganic cement, exhibiting minimal dimensional changes upon hardening and long-time use, improved mechanical properties and improved translucency. An algorithm to describe the micro-structure is expressed as λ = d * ( 1 - V F ) ( V F ) where λ is the distance between filler particles of mean size d, and VF is the volume content of non-reacted cement and added filler, and where λ≦10 μm. The invention also relates to a device in connection with the preparation of a chemically bonded biomaterial element according to the invention.
Abstract:
The present invention pertains to injectable heat generating biocompatible ceramic compositions based on hydraulic calcium aluminate, which can be used for therapeutic treatment in vivo, such as tumour treatment, pain control, vascular treatment, drug activation etc, when curing in situ, and which form a biocompatible solid material that can be left in the body for prolonged periods of time without causing negative health effects. The present invention can also be used to restore the mechanical properties of the skeleton after cancerous diseases.
Abstract:
A chemically bonded biomaterial element composed of an inorganic cement, exhibiting minimal dimensional changes upon hardening and long-time use, improved mechanical properties and improved translucency. An algorithm to describe the micro-structure is expressed as λ = d * ( 1 - V F ) ( V F ) where λ is the distance between filler particles of mean size d, and VF is the volume content of non-reacted cement and added filler, and where λ≦10 μm. The invention also relates to a device in connection with the preparation of a chemically bonded biomaterial element according to the invention.
Abstract:
The invention describes a low temperature method for producing multi-layered or multi-phased coatings. With the technique according to the present invention, surface coatings with controlled variations in terms of chemical composition, phase composition, porosity, surface roughness, mechanical properties, biocompatibility, etc can be achieved. The method of coating a substrate surface comprising the steps of preparing one powder mixture, or several powder mixtures having different chemical composition, wherein at least one of said powder mixtures comprise a non-hydrated hydraulic ceramic powder binder phase, pre-treating a substrate surface, to increase the adhesion between the substrate and the ceramic coating, applying one or more different layers on top of each other of the non-hydrated powder mixture on the substrate, and finally, hydrating the powder layer/layers in a curing agent containing ions of carbonates, phosphates or fluorides.
Abstract:
Method for the production of a chemically bound ceramic material by means of reaction between a binding phase of one or more powdered binding agents and a liquid reacting with these binding agents, a quantity of powder containing said binding phase being suspended in said liquid so that all powder grains are brought into close contact with the liquid, whereupon the slurry thus obtained is drained so that the majority of surplus reacting liquid is removed, and is compacted during final draining, before the material is permitted to harden by reaction between said binding phase and the remaining liquid. One or more expansion-compensating additives, adapted to give the material dimensionally stable long-term properties, are mixed into said powder, prior to or in conjunction with its suspension in the liquid. The invention also relates to the product of the method.
Abstract:
The present invention relates to a method to manufacture a composite ceramic material having a high strength combined with bioactive properties, when the material is used as a dental or orthopedic implant, which includes preparing a powder mixture, mainly comprising partly a first powder, which in its used chemical state will constitute a bioinert matrix in the finished material , and partly a second powder, mainly comprising a calcium phosphate-based material. The invention is characterized in that said first powder comprises at least one of the oxides belonging to the group consisting of titanium dioxide (TiO.sub.2), zirconium oxide (ZrO.sub.2) and aluminum oxide (Al.sub.2 O.sub.3), in that said second powder mainly comprises at least one of the compounds hydroxylapatite and tricalcium phosphate, in that a raw compact is made of said powder mixture and in that said raw compact is densified through an isostatic pressing in a hot condition (HIP) at a pressure higher than 50 MPa, a composite material being obtained, in which said matrix comprises one or several metal oxides of said first powder, in which matrix said compound hydroxylapatite and/or tricalcium phosphate is evenly dispersed.The invention also relates to a composite ceramic material as well as a body, completely or partially made of this material.