Abstract:
A foaming agent, more particularly for the foaming of a building material/binder paste for producing pory lightweight-construction and insulating materials, is improved in terms of its stability and usefulness at relatively low outdoor temperatures. The foaming agent in the form of an aqueous-organic solution comprises or consists to an extent of at least 85 wt % of the following constituents: a) a surfactant component which comprises at least one foam-forming ionic surfactant, b) a fatty alcohol component which comprises at least one fatty alcohol and at least one ethoxylated fatty alcohol in a FA/FAEO mixing ratio of 95:5 to 0:100, c) a glycol component which comprises at least one constituent of the group of alkyl glycols, alkylene glycols up to C6 alkyl, diglycols, especially alkyl diglycols and diglycol ethers, and water.
Abstract:
The presently disclosed and/or claimed inventive concept(s) relates generally to a stone paint formulation. More particularly, the presently disclosed and/or claimed inventive concept(s) relates to a stone paint comprising a composition A and a composition B. The composition A comprises a latex emulsion, a rheology modifier, a coalescing agent, a biocide, a neutralizing agent and a solvent. The composition B comprises a sand. Additionally, the presently disclosed and/or claimed inventive concept(s) relates to a method of making the stone paint formulation by using the rheology modifier. The stone paint of the presently disclosed and/or claimed inventive concept(s) has enhanced resistance to water-whitening.
Abstract:
Reinforcing filaments or fibers, such as aromatic polyamide (aramid) fibers, can be reliably measured and consistently mixed into asphalt cement concrete by soaking the fibers in a wetting agent, then severing them to a desired length, and mixing the segments with other ACC ingredients. The wetting agent holds the fibers together loosely, so they can be distributed more uniformly throughout the ACC without clumping. The wetting agent soaks into the ACC mixture and/or evaporates, leaving the reinforcing fibers behind.
Abstract:
Techniques and compositions for applying films to a variety of substrates, from water-borne coating compositions, are provided. The techniques involve providing desiccant and applying the desiccant with water-borne film-forming composition, in application to a substrate. The desiccant composition provides for take up of free water in of the film-forming composition, without total reliance on ambient conditions, to advantage. Compositions, methods, techniques and resulting constructions are described. The techniques can be applied in wet thick film applications, but are not limited to such applications.
Abstract:
A method for cutting or otherwise removing material from an inorganic substrate (e.g., a substrate formed from a cementitious material, such as concrete, or stone, etc.) includes applying an aqueous solution that includes a hardener/densifier to the inorganic substrate and/or to a removal element (e.g., a saw blade, an abrasive wheel, a grinding disk, etc.), the inorganic substrate or material removed from the inorganic substrate as the removal element removes material from the inorganic substrate. A system for removing material from an inorganic substrate includes a removal element and an aqueous solution that includes a hardener/densifier.
Abstract:
The invention relates to kit of parts comprising a solution, a porous zirconia article, optionally application equipment, the solution comprising cation(s) of non-colouring agent(s) selected from ions of Y, Gd, La, Yb, Tm, Mg, Ca and mixtures thereof, solvent(s) for the ion(s), optionally complexing agent(s), optionally thickening agent(s), optionally organic marker substance(s), optionally additive(s), the porous zirconia article showing a N2 adsorption and/or desorption of isotherm type IV according to IUPAC classification. The invention also relates to a method for enhancing the translucency of a zirconia article comprising the steps of providing a porous zirconia article and a solution, applying the solution to at least a part of the outer surface of the porous zirconia article, optionally drying the porous zirconia article of the preceding step, sintering the porous zirconia article to obtain a zirconia ceramic article.
Abstract:
This invention relates to methods for servicing subterranean wells, in particular, fluid compositions and methods for remedial operations during which the fluid compositions are pumped into a wellbore and make contact with well cements placed during primary cementing or previous remedial cementing operations.
Abstract:
Fluid compositions containing a silica-particle suspension with no intrinsic cementitious properties may be pumped into a wellbore. Upon making downhole contact with previously placed well cements from primary-cementing or previous remedial-cementing operations, the silica suspension reacts to form a gel that seals voids, cracks or fissures in the cement sheath. Portland cement is the preferred cement with which the silica-particle suspensions interact downhole.
Abstract:
A method for producing a laminated product including applying a slab product to at least one surface of a substrate, the method including placing the substrate onto the slab material when the slab product is in a semi set partially cured state, then allowing the laminated product to cure. Preferably the slab is cement based and the substrate is a masonry product, already manufactured and cured, e.g., tiles, mosaics, bench tops. The method may alternatively cast a cementitious slab first, and then when that is partially cured pour the cementitious substrate onto it, then cutting the whole assembly into smaller pieces while the whole assembly is still in a partially cured semi set state.
Abstract:
A catalyst composition for pozzolan compositions, includes: a) one or more chlorides, selected from the group consisting of: sodium chloride, potassium chloride, magnesium chloride, calcium chloride, strontium chloride, barium chloride and/or ammonium chloride, preferably ammonium chloride; b) aluminum chloride, and c) one or more metal oxides, preferably selected from the group consisting of: oxides from metals from Group II of the Periodic Table, oxides from metals from Group VIII B of the Periodic Table (e.g. iron oxide), more preferably oxides from metals from Group II of the Periodic Table, even more preferably magnesium oxide or calcium oxide, most preferably magnesium oxide. The use of the catalytic composition for addition to cement for oil well cementing, and for lowering the pH of cement, a method for obtaining a composition for reinforcing cement, a binder composition and a construction composition are also described.