Abstract:
Embodiments for operating an engine with direct injection are provided. In one example, a method for operating an applied-ignition internal combustion engine having at least one cylinder and direct injection comprises raising a component temperature of an injection device of the at least one cylinder at least locally in a region of a catalytic coating in order to initiate and assist oxidation of coking residues. Thus, deposits of coking residues may be counteracted even in part-load operation.
Abstract:
In a transverse-mounted cylinder-in-line internal combustion engine (1) fitted in a motor vehicle, the exhaust gases from the side of the internal combustion engine opposite to the direction of travel are led forwardly round the internal combustion engine and from there reach an NOx trap (8) arranged in the middle region of the vehicle. For rapid heating up on cold starting the three-way converter (12) is arranged immediately after the exhaust manifold (2), and in addition when a valve (9) is closed the exhaust gases are led through a short supply duct (5) directly to an exhaust duct (13) which opens into an NOx trap.
Abstract:
Methods and systems for controlling an engine that may be automatically stopped and started are presented. In one example, a compressor is activated from a deactivated state in response to one or more environmental parameters during an engine start. The methods and systems may improve engine response after an engine start.
Abstract:
A method for controlling a propulsion system for a vehicle including a transmission coupling an output shaft of the internal combustion engine to a drive wheel of the vehicle, wherein said transmission includes a lash region, the method comprising of adjusting an operating parameter of the engine so that at least one cylinder of the engine is transitioned between a first combustion mode and a second combustion mode, and varying a timing of said transition responsive to whether the transmission is operating within the lash region of the transmission.
Abstract:
A method for operating an engine is provided. The method comprises adjusting an oil pressure in an oil circuit, the oil circuit including a pump in fluidic communication with a hydraulically adjustable cam follower and switching the hydraulically adjustable cam follower into a connected state to a disconnected in response to the oil pressure adjustment.
Abstract:
A method for controlling a vehicle operation in the transmission lash region. One method includes transitioning a combustion mode of a cylinder, and varying a timing of said transition responsive to whether the transmission is operating within the lash region of the transmission.
Abstract:
Systems and methods for controlling shut down of a multiple cylinder internal combustion engine include a mechanical energy storage device to decelerate an engine crankshaft to a stopping position desirable for restarting of the engine. Energy stored during shut down may be used to adjust or reposition the crankshaft to one of a plurality of angular orientations advantageous for restarting, and/or used to rotate the crankshaft during restarting of the engine. A flywheel having a variable mass, such as provided by two or more segments, which may be fixedly or selectively coupled to one or more springs may be used to selectively store and release energy.
Abstract:
The invention relates to a method for improving the initial conditions for starting a direct injection, spark-ignition internal combustion engine. Measures, such as adjusting the throttle valve, a varying inlet and exhaust valve timings, operating a secondary-air pump, ensures that the internal combustion engine, when running down, scavenges exhaust gases from the cylinder by providing fresh air into the. Furthermore, measures are undertaken for the braking and/or active rotation of the internal combustion engine so that it is a suitable position for renewed starting, the restarting being accomplished without the aid of a starter motor.
Abstract:
An inlet arrangement is provided for a multi-cylinder internal combustion engine. Each cylinder has an air inlet passage and a pair of inlet valves. A control flap is disposed within the inlet passage of one of the cylinders, the flap being pivotable about a pivot axle. The axle is disposed transverse to the length of the inlet passage. The flap has an operative position in which swirling of the air occurs and a starting position. The flap has a pair of wings provided on opposite sides of the pivot axle. The control flap has a base profile substantially corresponding to the internal profile of the inlet passage and a base area. One of the wings has a greater base area than the second of the wings. The first wing has a recess adjacent to the outer circumference of the wing. The recess, in the starting position of the control flap, faces away from direction from which the air flows.
Abstract:
The invention relates to a method for operating a multicylinder internal combustion engine having a device, preferably an asymmetric swirl valve, located in the cylinder inlet passage and selectively movable by means of a control unit from a starting position into an effective position, for influencing the flow conditions in the cylinder inlet passage. In known methods the swirl control valve is brought into its effective position in a predetermined rotational speed/torque region and the engine is operated with a stoichiometric or rich mixture. Outside this region the swirl control valve is brought into its starting position and the engine is operated using a substantially stoichiometric or rich mixture. In contrast to this, a saving in fuel is obtained by bringing the swirl control valve into the starting position in a second predetermined rotational speed/torque region lying outside the predetermined first rotational speed/torque region and at the same time operating the internal combustion engine using a lean mixture.