Abstract:
A method and system for curing a die attach material for attachment of a semiconductor die to a leadframe which includes a carrier receiving location for receiving at least one carrier(1) wherein each carrier contains at least one leadframe strip (3) therein, a die attach material (15) on the leadframe strip and a semiconductor die (13) on the die attach material. A heat source (5) is provided for radiating thermal energy to the carrier receiving location. A reflector (9) is disposed around the heat source and the carrier receiving location for reflecting thermal energy from the heat source to the carrier receiving location. A source of flowing cool gas (11) is provided in heat exchange relationship with the reflector for cooling the reflector while heating the gas. The heated gas is passed through the carrier receiving location to provide a source of heat by convection at the carrier receiving location and purge the carrier receiving location of volatiles. The heat source provides radiations principally in the range of from about 0.5.mu. to about 2.0.mu. and is preferably a tungsten halogen lamp. The heat source is controllable responsive to a function of the instantaneous temperature of the die attach material and the leadframe strip to control the intensity and profile of the heat source. Cooling air is optionally injected into the system upon completion of curing.
Abstract:
A system for applying a rotary force to strips of varying widths. The system includes a plurality of adjacent tracks of progressively greater width, each of the tracks disposed at a height above all tracks of lesser width. A plurality of rotating members are provided, one rotating member extending into one of the tracks and extending to the surface of the associated track. An adjustable drive disc is adjusted to be disposed over a preselected one of the rotating members and is movable toward the rotating members to apply a rotary force to a strip disposed between the rotating member and the disc. Each of the tracks is defined by a pair of spaced apart surfaces with all of the rotating members being on a common rotating shaft.
Abstract:
In integrated semiconductor manufacturing, semiconductor dies may be packaged in ceramic packages. Such packages typically have a base into which the semiconductor die is securedly placed and typically have a lead frame securedly attached to base so that electrical connection may be made to the semiconductor die. A halagen lamp radiant chamber significantly reduces the time it takes to attach the die and lead frame to the ceramic base while reducing particles commonly associated with open belt converyor furnaces.
Abstract:
A lead frame (10) is connected over an integrated circuit (40) by adhesives (42) and (44). Each lead conductor (16) and (18) of the lead frame (10) has the identical geometric area in order to provide identical capacitances. A metal shield may be provided on adhesives (42) and (44) to provide noise shielding for the integrated circuit (40).
Abstract:
A system for positioning a carrier relative to a travel path which includes a base having a pair of opposing side walls extending normal to the base and defining a path therebetween. A force applying device is disposed in one of the side walls and extends into the path for applying a force in the direction of the other side wall. A pair of rotatable eccentric members is secured to the other of the walls and extends into the path for selectively positioning a carrier between the eccentric members and the force applying device.
Abstract:
A method of curing a die attach material for a semiconductor device which includes providing a carrier containing a plurality of stacked leadframe strips, each leadframe strip with a die attach material thereon. One leadframe strip is ejected from the carrier, travels into a chamber and is centered therein. The leadframe strip is then heated and the die attach material is cured selective to the leadframe strip using a tungsten-halogen lamp. Simultaneously volatile products of the cure are exhausted from the chamber. The leadframe strip is then returned to its original position in the carrier, the carrier is elevated so that a different leadframe strip is in position for ejection from the carrier and is ejected.
Abstract:
A lead frame for a semiconductor IC device has a pair of common elongated leads and first and second groups of slender leads arranged on opposite sides of the common elongated leads and generally extending transverse to the common elongated leads. The common elongated leads have as their integral parts slender leads extending therefrom generally transverse thereto and substantially linear extensions from both ends of the common elongated leads. The linear extensions serve to firmly support a semiconductor chip to be packaged along with parts of the leads. The common elongated leads may further have as their integral parts projections extending from their sides for enhancement of the heat dissipation capability. A semiconductor chip may have bonding pads arranged thereon such that bonding wires and the common elongated leads do not cross each other for electrical connection between the common elongated leads and bonding pads of the semiconductor chip.
Abstract:
A process for manufacturing a lead frame (10) connected over an integrated circuit (40) by adhesives (42) and (44). Each lead conductor (16) and (18) of the lead frame (10) has the identical geometric area in order to provide identical capacitances. A metal shield may be provided on adhesives (42) and (44) to provide noise shielding for the integrated circuit (40).
Abstract:
The present invention provides a thermally enhanced molded cavity package (10) having a package body (12) with upper (40) and lower (42) sections. The package body (12) has a cavity (22) with the cavity opening (32) in the upper section (40) of the package body (12). The present package (10) includes a lead frame (14) with a plurality of individual leads (16) that are external to the cavity (22) and a plurality of lead fingers (28) that are internal to the cavity (22). The present package (10) also includes a heat spreader (34) for increasing heat dissipation from the package (10) in the lower section (42) of the package body (12) and coupled to the lead frame (14). The heat spreader (34) has a first surface (26) forming a floor of the cavity upon which a microcircuit chip (24) may be mounted and a second surface forming a base (36) of the package body (12). The upper section (40) of the package body (12) includes a lid seat (33) for supporting a lid (30) and for maintaining the lid (30) parallel to the floor (26) of the cavity when the lid (30) is placed in the cavity opening (32).
Abstract:
A lead frame for a semiconductor IC device has a pair of common elongated leads and first and second groups of slender leads arranged on opposite sides of the common elongated leads and generally extending transverse to the common elongated leads. The common elongated leads have as their integral parts slender leads extending therefrom generally transverse thereto and substantially linear extensions from both ends of the common elongated leads. The linear extensions serve to firmly support a semiconductor chip to be packaged along with parts of the leads. The common elongated leads may further have as their integral parts projections extending from their sides for enhancement of the heat dissipation capability. A semiconductor chip may have bonding pads arranged thereon such that bonding wires and the common elongated leads do not cross each other for electrical connection between the common elongated leads and bonding pads of the semiconductor chip.