Abstract:
A method forms a gate conductor over a substrate, and simultaneously forms spacers on sides of the gate conductor and a gate cap on the top of the gate conductor. Isolation regions are formed in the substrate and the method implants an impurity into exposed regions of the substrate not protected by the gate conductor and the spacers to form source and drain regions. The method deposits a mask over the gate conductor, the spacers, and the source and drain regions. The mask is recessed to a level below a top of the gate conductor but above the source and drain regions, such that the spacers are exposed and the source and drain regions are protected by the mask. With the mask in place, the method then safely removes the spacers and the gate cap, without damaging the source/drain regions or the isolation regions (which are protected by the mask). Next, the method removes the mask and then forms silicide regions on the gate conductor and the source and drain regions.
Abstract:
Methods of forming integrated circuit devices include depositing an electrically insulating layer onto an integrated circuit substrate having integrated circuit structures thereon. This deposition step results in the formation of an electrically insulating layer having an undulating surface profile, which includes at least one peak and at least on valley adjacent to the at least one peak. A non-uniform thickening step is then performed. This non-uniform thickening step includes thickening a portion of the electrically insulating layer by redepositing portions of the electrically insulating layer from the least one peak to the at least one valley. This redeposition occurs using a sputter deposition technique that utilizes the electrically insulating layer as a sputter target.
Abstract:
An integrated circuit system that includes: providing a substrate including a first region with a first device and a second device and a second region with a resistance device; configuring the first device, the second device, and the resistance device to include a first spacer and a second spacer; forming a stress inducing layer over the first region and the second region; processing at least a portion of the stress inducing layer formed over the first region to alter the stress within the stress inducing layer; and forming a third spacer adjacent the second spacer of the first device and the second device from the stress inducing layer.
Abstract:
In a semiconductor device having a dual stress liner for improving electron mobility, the dual stress liner includes a first liner portion formed on a PMOSFET and a second liner portion formed on an NMOSFET. The first liner portion has a first compressive stress, and the second liner portion has a second compressive stress smaller than the first compressive stress. The dual stress liner may be formed by forming a stress liner on a semiconductor substrate on which the PMOSFET and the NMOSFET are formed and selectively exposing a portion of the stress liner on the NMOSFET.
Abstract:
A method of fabricating a semiconductor integrated circuit (IC) device can include forming a first silicide layer on at least a portion of a transistor on a substrate, forming nitrogen in the first silicide layer to form a second silicide layer, forming a first stress layer having a tensile stress on the substrate having the transistor formed thereon, and irradiating the first stress layer with ultraviolet (UV) light to form a second stress layer having greater tensile stress than the first stress layer.
Abstract:
A method for providing a dual stress memory technique in a semiconductor device including an nFET and a PFET and a related structure are disclosed. One embodiment of the method includes forming a tensile stress layer over the nFET and a compressive stress layer over the pFET, annealing to memorize stress in the semiconductor device and removing the stress layers. The compressive stress layer may include a high stress silicon nitride deposited using a high density plasma (HDP) deposition method. The annealing step may include using a temperature of approximately 400-1200° C. The high stress compressive silicon nitride and/or the anneal temperatures ensure that the compressive stress memorization is retained in the pFET.
Abstract:
A semiconductor device is provided wherein at least one offset spacer is reduced and a non-conformal stress liner is thereafter deposited. By depositing the non-conformal stress liner in accordance with the present invention in close stress proximity to the FET, the carrier mobility and the performance of said device is significantly enhanced. The present invention is her directed to a method of fabricating said semiconductor device.
Abstract:
Methods of forming integrated circuit devices include forming a trench in a surface of semiconductor substrate and filling the trench with an electrically insulating region having a seam therein. The trench may be filled by depositing a sufficiently thick electrically insulating layer on sidewalls and a bottom of the trench. Curing ions are then implanted into the electrically insulating region at a sufficient energy and dose to reduce a degree of atomic order therein. The curing ions may be ones selected from a group consisting of nitrogen (N), phosphorus (P), boron (B), arsenic (As), carbon (C), argon (Ar), germanium (Ge), helium (He), neon (Ne) and xenon (Xe). These curing ions may be implanted at an energy of at least about 80 KeV and a dose of at least about 5×1014 ions/cm2. The electrically insulating region is then annealed at a sufficient temperature and for a sufficient duration to increase a degree of atomic order within the electrically insulating region.
Abstract translation:形成集成电路器件的方法包括在半导体衬底的表面中形成沟槽,并用其中具有接缝的电绝缘区填充沟槽。 可以通过在沟槽的侧壁和底部上沉积足够厚的电绝缘层来填充沟槽。 然后将固化离子以足够的能量和剂量注入电绝缘区域以减少其中原子序列的程度。 固化离子可以是选自氮(N),磷(P),硼(B),砷(As),碳(C),氩(Ar),锗(Ge),氦 ),氖(Ne)和氙(Xe)。 这些固化离子可以以至少约80KeV的能量和至少约5×1014个离子/ cm 2的剂量注入。 然后将电绝缘区域在足够的温度下退火并持续足够的时间以增加电绝缘区域内的原子级数。
Abstract:
An integrated circuit system is provided including forming a circuit element on a wafer, forming a stress formation layer having a non-uniform profile over the wafer, and forming an interlayer dielectric over the stress formation layer and the wafer.
Abstract:
A semiconductor device is provided wherein at least one offset spacer is reduced and a non-conformal stress liner is thereafter deposited. By depositing the non-conformal stress liner in accordance with the present invention in close stress proximity to the FET, the carrier mobility and the performance of said device is significantly enhanced. The present invention is her directed to a method of fabricating said semiconductor device.