Abstract:
A method of manufacture of an integrated circuit packaging system includes: providing a substrate; forming an integrated circuit device having a shaped side; mounting the integrated circuit device on the substrate; forming an encapsulation on the substrate and the integrate circuit device with the shaped side partially exposed from the encapsulation.
Abstract:
A method of manufacture of an integrated circuit packaging system includes: providing a substrate; attaching an integrated circuit to the substrate; molding an encapsulation directly on the integrated circuit and the substrate; forming a trench in the encapsulation having a trench bottom surface and surrounding the integrated circuit; and mounting a heatsink having a heatsink rim over the integrated circuit with the heatsink rim within the trench and the heatsink electrically isolated from the substrate.
Abstract:
A semiconductor device has a substrate and insulating layer formed over a surface of the substrate. A first conductive layer is formed over the surface of the substrate. A second conductive layer is formed over an opposing surface of the substrate. A conductive via is formed through the substrate. An opening is formed in the insulating layer while leaving the first conductive layer intact. The opening narrows with a non-linear side or linear side. The opening can have a rectangular shape. A semiconductor die is mounted over the surface of the substrate. An underfill material is deposited between the semiconductor die and substrate. The opening in the insulating layer reduces a flow rate of the underfill material proximate to the opening. The flow rate of the underfill material proximate to the opening is substantially equal to a flow rate of the underfill material away from the opening.
Abstract:
A stacked integrated circuit package-in-package system is provided forming a first device having a first integrated circuit package comprises forming a first substrate with a first integrated circuit thereon, electrically connecting first electrical interconnects between the first integrated circuit and a top side of the first substrate, encapsulating a first top molding compound to cover the first electrical interconnects and a portion of the top side of the first substrate, and encapsulating a first bottom molding compound to cover the first integrated circuit and a bottom side the first substrate, and stacking a second device, having a second integrated circuit package, below the first device with a second top molding compound of the second device providing a space between the first device and the second device, wherein the second device includes the second top molding compound and a second bottom molding compound in a similar manner to the first device.
Abstract:
A semiconductor device has a semiconductor wafer with an interconnect structure formed over a first surface of the wafer. A trench is formed in a non-active area of the semiconductor wafer from the first surface partially through the semiconductor wafer. A protective coating is formed over the first surface and into the trench. A lamination tape is applied over the protective coating. A portion of a second surface of the semiconductor wafer is removed by backgrinding or wafer thinning to expose the protecting coating in the trench. A die attach film is applied over the second surface of the semiconductor wafer. A cut or modified region is formed in the die attach film under the trench using a laser. The semiconductor wafer is expanded to separate the cut or modified region of the die attach film and singulate the semiconductor wafer.
Abstract:
A method of manufacture of an integrated circuit packaging system includes providing a substrate; connecting an integrated circuit die; forming a molding having a temperature-dependent characteristic directly on the top surface of the substrate; and forming a coupling encapsulation having a coupled characteristic different from the temperature-dependent characteristic directly on the molding forms an encapsulation boundary between the coupling encapsulation and the molding.
Abstract:
A method of manufacture of a package-on-package system includes: providing a package substrate; attaching a semiconductor die to the package substrate; forming an encapsulant around the semiconductor die to have a bottom exposed surface coplanar with a bottom surface of the package substrate and to have a top exposed surface with through openings extending therefrom through the bottom exposed surface; and creating through vias by applying solder into the through openings.
Abstract:
A package-on-package system includes: forming a first integrated circuit package including second top electrical contacts and first external electrical contacts on opposite sides thereof; forming an internal stacking module interposer including first top electrical contacts and base electrical connectors on opposite sides thereof; attaching the internal stacking module interposer to the first integrated circuit package with the first top electrical contacts connected to the second top electrical contacts; and molding a package encapsulant over the first integrated circuit package and around the internal stacking module interposer leaving a package encapsulant cavity for attaching a stacked package to the base electrical connectors.
Abstract:
A method of manufacture of an integrated circuit packaging system includes: forming a base package having a base interposer; forming an intermediate package having an intermediate interposer and an intermediate package embedded link trace, the intermediate package embedded link trace being encapsulated in an intermediate package mold compound; forming a cap package having a cap interposer; and connecting the intermediate package to the cap package and the base package using the intermediate package embedded link trace.
Abstract:
An integrated circuit package system includes: providing a module substrate having dimension predetermined for attachment adjacent a device; attaching a module die adjacent the module substrate; and applying a module molding material cantilevered from the module substrate and over the module die.