摘要:
This invention provides an Osseo-inductive metal implant for a living body and the producing method thereof and, more particularly, the Osseo-inductive metal implant for a living body according to the present invention is produced by forming, on the surface of the metal implant, the layer of metal oxide and the layer of bio-active material injected.
摘要:
A p-type NiO conducting film for an organic solar cell, a preparation method thereof, and an organic solar cell using the same and having enhanced power conversion efficiency, are provided, wherein the NiO conducting film is fabricated by vacuum sputtering in which nickel or nickel oxide is used as a target material, and argon, oxygen or the mixed gas of the argon and the oxygen is supplied. The p-type NiO conducting film may be easily prepared by vacuum sputtering, and since a n-type conducting film is prepared by simply coating sol-phase precursor solution, the NiO conducting film and the organic solar cells having the NiO conducting film in the order of the NiO conducting film, a photoactive layer, and a n-type conducting film, have enhanced electric energy conversion. As a result, the provided disclosure is useful particularly when applied in organic solar cells and organic light emitting devices.
摘要:
A semiconductor device and a method for manufacturing the same are provided. The semiconductor device includes cylinder type bottom electrodes connected to a contact plug formed over a semiconductor substrate, and a supporting pattern formed between the cylinder type bottom electrodes, wherein a portion of sidewalls of the bottom electrodes is higher than the supporting pattern and the other portion of the sidewalls of the bottom electrode is lower than the supporting pattern.
摘要:
Disclosed are methods of manufacturing a metal wiring buried flexible substrate by using plasma and flexible substrates manufactured by the same. The method includes pre-treating a substrate by irradiating the plasma on the surface of the substrate (Step 1), forming a metal wiring on the pre-treated substrate in Step 1 (Step 2), forming a metal wiring buried polymer layer by coating a curable polymer on the substrate including the metal wiring formed thereon in Step 2 and curing (Step 3), and separating the polymer layer formed in Step 3 from the substrate in Step 1 (Step 4). The metal wiring may be inserted into the flexible substrate, and the resistance of the wiring may be decreased. The metal wiring may be clearly separated from the substrate, and impurities on the substrate surface may be clearly removed. The flexible substrate may be easily separated by applying only physical force.
摘要:
A semiconductor device and a method for manufacturing the same are provided. The semiconductor device includes cylinder type bottom electrodes connected to a contact plug formed over a semiconductor substrate, and a supporting pattern formed between the cylinder type bottom electrodes, wherein a portion of sidewalls of the bottom electrodes is higher than the supporting pattern and the other portion of the sidewalls of the bottom electrode is lower than the supporting pattern.
摘要:
A method for forming a shallow trench isolation (STI) of a semiconductor device comprises forming a nitride film pattern over a semiconductor substrate having a defined lower structure, etching a predetermined thickness of the semiconductor substrate using the nitride film pattern as a mask to form a trench having a vertical sidewall in a portion of the substrate predetermined to be a device isolation region, performing a plasma treatment process on the sidewall of the trench to form a plasma oxide film, forming an oxide film over the resulting structure to fill the trench, and performing a planarization process over the resulting structure.
摘要:
A method for manufacturing a semiconductor device comprises: forming an interlayer insulating film including a storage node contact plug over a semiconductor substrate; forming an etching barrier film, a sacrificial insulating film, and a hard mask film over the storage node contact plug and the interlayer insulating film; forming a first storage node region by removing a portion of the sacrificial insulating film and the hard mask film by an etching process such that a polymer film is formed at a sidewall of the hard mask film and the sacrificial insulating film; and forming a second storage node region by removing the remaining portions of the sacrificial insulating film and the etching barrier film, thereby exposing the storage node contact plug. The method prevents a bowing phenomenon in the etching process for forming a storage node region and thus allows storage nodes having substantially vertical profiles to be formed.
摘要:
This invention provides an Osseo-inductive metal implant for a living body and the producing method thereof and, more particularly, the Osseo-inductive metal implant for a living body according to the present invention is produced by forming, on the surface of the metal implant, the layer of metal oxide and the layer of bio-active material injected.
摘要:
Embodiments of the present invention may provide an apparatus and a method for transmitting an orthogonal frequency division multiplexing access (OFDMA) symbol in an OFDMA system. A bandwidth limit parameter for generating an OFDMA symbol may be adaptively determined based on the received signal quality of a receiver. An OFDMA symbol may be generated based on the bandwidth limit parameter and transmitted to the receiver. According to embodiments, when the received signal quality of the receiver is bad, the bandwidth limit parameter may be first adjusted before the modulation scheme is changed to have a lower data rate. In such a case, the downlink date rate may be maintained with enhancing the received signal quality of the receiver.
摘要:
A method for forming a metal contact in a semiconductor device includes forming bit lines over a substrate defined into a cell region and a peripheral region, forming a first inter-layer dielectric (ILD) layer over the bit lines, forming a first etch stop layer over the first ILD layer, forming a capacitor in the cell region, forming a second etch stop layer over the substrate after the capacitor is formed, forming a second ILD layer over the second etch stop layer, performing a first etching process to etch portions of the second ILD layer and the second etch stop layer to thereby form first metal contact holes exposing the first etch stop layer, and performing a second etching process to etch portions of the first etch stop layer and the first ILD layer to thereby form second metal contact holes exposing the bit lines.