Abstract:
The present application discloses a positive electrode active material, comprising a lithium nickel manganese oxide modified material and a coating layer on the surface of the lithium nickel manganese oxide modified material. The lithium nickel manganese oxide modified material is a primary particle with a core-shell-like structure comprising a spinel phase and a rocksalt-like structure phase. The spinel phase is an inner core, and the rocksalt-like structure phase constitutes an outer shell. The rocksalt-like structure phase is further doped with a phosphorus element and the phosphorus element is distributed in a gradient from the outer surface to the interior of the rocksalt-like structure phase. The present application further discloses a preparation method of the positive electrode active material, a positive electrode containing the positive electrode active material for lithium-ion secondary batteries, and a lithium ion secondary battery.
Abstract:
Provided is a prelithiation material, comprising a lithium-containing compound and an inorganic non-metallic reductive agent. Further provided is a method for preparing the prelithiation material of the present invention. Further provided is use of the prelithiation material of the present invention in a lithium ion battery. By mixing the prelithiation material provided by the present invention with a positive electrode material or coating the side of a separator near the positive electrode with the same, a battery is assembled, and during first cycle, active lithium can be released so as to compensate active lithium lost from a negative electrode. The prelithiation material provided by the present invention has a good compatibility with currently commercially available positive and negative electrodes, and is very suitable for current secondary lithium ion batteries.
Abstract:
The invention provides a composite-coated nano-tin negative electrode material, which comprises a tin-based nanomaterial, a nano-copper layer coated on the surface of the tin-based nanomaterial and a conductive protective layer coated on the surface of the nano-copper layer. The nano-copper layer can inhibit the volume expansion of nano-tin, keep the nano-tin material from cracking, avoid direct contact between nano-tin and electrolyte to form stable SEI and increase the conductivity of the electrode. Coating a conductive layer on the surface of the nano-copper layer can effectively inhibit the oxidation of nano-copper, thus improving its electrochemical performance. The composite-coated nano-tin negative electrode material according to the invention is used as a negative electrode material of a lithium-ion battery, has excellent electrochemical performance, and has potential application prospects in portable mobile devices and electric vehicles.
Abstract:
The present disclosure relates to a magnonic magnetoresistance (MMR) device and an electronic equipment including the same. According to one embodiment, a core structure of a MMR device may include: a first ferromagnetic insulating layer (Ferro-magnetic Insulator, FMI1); a two-dimensional conductive material layer (Spacer) set on the first ferromagnetic insulating layer; and a second ferromagnetic insulating layer (Ferro-magnetic Insulator, FMI2) set on the two-dimensional conductive material layer. The MMR device of the present disclosure may enhance interface effect in spin electron transmission and thus improve performance of the MMR device.
Abstract:
The present disclosure relates to a magnon spin valve device, a magnon sensor, a magnon field effect transistor, a magnon tunnel junction and a magnon memory. A magnon spin valve device may comprise a first ferromagnetic insulation layer, a non-magnetic conductive layer disposed on the first ferromagnetic insulation layer, and a second ferromagnetic insulation layer disposed on the non-magnetic conductive layer.
Abstract:
The present invention provides a preparation method for a fully-transparent thin film transistor, wherein a transparent conductive gate electrode layer of the fully-transparent thin film transistor is used as a photolithographic mask, a photoresist is exposed through a rear surface of a transparent substrate, the transparent substrate has a transmittance higher than 60% to an exposure light beam, and the transparent conductive gate electrode layer has a transmittance lower than 5% to the exposure light beam. In the preparation method for a fully-transparent thin film transistor provided by the present invention, by using a self-aligned technology, the process complexity and the feature size of the device can both be reduced.
Abstract:
A magnetic multilayer film for a temperature sensor is disclosed. The magnetic multilayer film comprises: a bottom magnetic composite layer provided on a substrate, the bottom magnetic composite layer having a direct pinning structure, an indirect pinning structure, a synthetic ferromagnetic structure, or a synthetic anti-ferromagnetic structure; a spacer layer provided on the bottom magnetic composite layer; and a top magnetic composite layer provided on the spacer layer, the top magnetic composite layer having the direct pinning structure, the indirect pinning structure, the synthetic ferromagnetic structure, or the synthetic anti-ferromagnetic structure, wherein a ferromagnetic layer of the bottom magnetic composite layer closest to the spacer layer has a magnetic moment anti-parallel with that of a ferromagnetic layer of the top magnetic composite layer closest to the spacer layer.
Abstract:
A high-temperature superconducting film includes a SrTiO3 substrate, a single crystalline FeSe layer, and a protective layer with a layered crystal structure. The single crystalline FeSe layer is sandwiched between the SrTiO3 substrate and the protective layer via a layer-by-layer mode. An onset temperature of superconducting transition of the high-temperature superconducting film is greater than or equal to 54 K, and a critical current density of the high-temperature superconducting film is about 106 A/cm2 at 12 K.
Abstract:
A method for making a high-temperature superconducting film includes loading a SrTiO3 substrate in an ultra-high vacuum system. A single crystalline FeSe layer is grown on a surface of the SrTiO3 substrate by molecular beam epitaxy. A protective layer with a layered crystal structure is grown by molecular beam epitaxy and covering the single crystalline FeSe layer.