Abstract:
Provided is an equipment for manufacturing a semiconductor. The equipment for manufacturing a semiconductor includes a cleaning chamber in which a cleaning process is performed on substrates, an epitaxial chamber in which an epitaxial process for forming an epitaxial layer on each of the substrates is performed, and a transfer chamber to which the cleaning chamber and the epitaxial chamber are connected to sides surfaces thereof, the transfer chamber including a substrate handler for transferring the substrates, on which the cleaning process is completed, into the epitaxial chamber.
Abstract:
Provided is a method of manufacturing a memory device having a 3-dimensional structure, which includes alternately stacking one or more dielectric layers and one or more sacrificial layers on a substrate, forming a through hole passing through the dielectric layers and the sacrificial layers, forming a pattern filling the through hole, forming an opening passing through the dielectric layers and the sacrificial layers, and supplying an etchant through the opening to remove the sacrificial layers. The stacking of the dielectric layers includes supplying the substrate with one or more gases selected from the group consisting of SiH4, Si2H6, Si3H8, and Si4H10, to deposit a silicon oxide layer. The stacking of the sacrificial layers includes supplying the substrate with one or more gases selected from the group consisting of SiH4, Si2H6, Si3H8, Si4H10, and dichloro silane (SiCl2H2), and ammonia-based gas, to deposit a silicon nitride layer.
Abstract translation:提供一种制造具有三维结构的存储器件的方法,其包括在衬底上交替堆叠一个或多个电介质层和一个或多个牺牲层,形成通过电介质层和牺牲层的通孔,形成 填充通孔的图案,形成穿过电介质层和牺牲层的开口,以及通过开口提供蚀刻剂以除去牺牲层。 电介质层的堆叠包括向衬底供给选自由SiH 4,Si 2 H 6,Si 3 H 8和Si 4 H 10组成的组中的一种或多种气体,以沉积氧化硅层。 牺牲层的堆叠包括向基板供应一种或多种选自SiH 4,Si 2 H 6,Si 3 H 8,Si 4 H 10和二氯硅烷(SiCl 2 H 2)的气体和氨基气体,以沉积氮化硅层。
Abstract:
Provided is a method of depositing an ultra-fine grain polysilicon thin film. The method includes forming a nitrogen atmosphere in a chamber loaded with a substrate, and supplying a source gas into the chamber to deposit a polysilicon thin film on the substrate, in which the source gas includes a silicon-based gas, a nitrogen-based gas, and a phosphorous-based gas. The forming of the nitrogen atmosphere may include supplying a nitrogen-based gas into the chamber.
Abstract:
A method for forming a capacitor includes forming a concave mold over a semiconductor substrate. A storage node is formed on the concave mold. A dielectric layer including a zirconium oxide (ZrO2) layer is deposited over the storage node at a first temperature. A radical pile-up treatment on the dielectric layer is performed in an atmosphere including radicals at a second temperature higher than the first temperature to induce crystallization of the dielectric layer. A plate node is formed over the dielectric layer.
Abstract:
Provided is a production method for a semiconductor device comprising a metal silicide layer. According to one embodiment of the present invention, the production method for a semiconductor device comprises the steps of: forming an insulating layer on a substrate, on which a polysilicon pattern has been formed, in such a way that the polysilicon pattern is exposed; forming a silicon seed layer on the exposed polysilicon pattern that has been selectively exposed with respect to the insulating layer; forming a metal layer on the substrate on which the silicon seed layer has been formed; and forming a metal silicide layer by carrying out a heat treatment on the substrate on which the metal layer has been formed.
Abstract:
Provided is an equipment for manufacturing a semiconductor. The equipment for manufacturing a semiconductor includes a cleaning chamber in which a cleaning process is performed on substrates, an epitaxial chamber in which an epitaxial process for forming an epitaxial layer on each of the substrates is performed, a buffer chamber having a storage space for storing the substrates, and a transfer chamber to which the cleaning chamber, the buffer chamber, and the epitaxial chamber are connected to side surfaces thereof, the transfer chamber comprising a substrate handler for transferring the substrates between the cleaning chamber, the buffer chamber, and the epitaxial chamber. The substrate handler successively transfers the substrates, on which the cleaning process is completed, into the buffer chamber, transfers the substrates stacked within the buffer chamber the epitaxial chamber, and successively transfers the substrates, on which the epitaxial layers are respectively formed, into the buffer chamber.
Abstract:
According to the present invention, a method for depositing an ultra-fine crystal particle polysilicon thin film supplies a source gas in a chamber loaded with a substrate to deposit a polysilicon thin film on the substrate, wherein the source gas contains a silicon-based gas, a nitrogen-based gas and a phosphorous-based gas. The mixture ratio of the nitrogen-based gas to the silicon-based gas among the source gas may be 0.03 or lower (but, excluding zero). Nitrogen in the thin film may be 11.3 atomic percent or lower (but, excluding zero).
Abstract:
A capacitor with nanotubes and a method for fabricating the same are provided. The capacitor includes: a lower electrode including a patterned conductive layer and a plurality of nanotubes formed on the patterned conductive layer in the shape of whiskers without using a catalytic layer; a dielectric layer formed on the lower electrode; and an upper electrode formed on the dielectric layer. The method includes the steps of: forming a conductive layer for forming a lower electrode; forming a nanotube array including a plurality of nanotubes formed on the conductive layer without using a catalytic layer; forming a dielectric layer on the nanotube array; and forming an upper electrode on the dielectric layer.
Abstract:
A capacitor with nanotubes and a method for fabricating the same are provided. The capacitor includes: a lower electrode including a patterned conductive layer and a plurality of nanotubes formed on the patterned conductive layer in the shape of whiskers without using a catalytic layer; a dielectric layer formed on the lower electrode; and an upper electrode formed on the dielectric layer. The method includes the steps of: forming a conductive layer for forming a lower electrode; forming a nanotube array including a plurality of nanotubes formed on the conductive layer without using a catalytic layer; forming a dielectric layer on the nanotube array; and forming an upper electrode on the dielectric layer.
Abstract:
The present invention provides a method for forming a contact plug of a semiconductor device with a low contact resistance. The inventive method includes the steps of: forming a contact hole in an inter-layer insulating layer formed on a silicon substrate; removing a native oxide layer formed in the contact hole; forming a single crystal silicon layer on a surface of the silicon substrate in the contact hole, wherein the single crystal silicon layer is formed by an epitaxial growth performed at a first reaction chamber of which pressure is maintained less than approximately 10−6 Torr; and filling the contact hole with polysilicon, wherein the polysilicon layer is formed at a second reaction chamber.