Abstract:
A capacitor with nanotubes and a method for fabricating the same are provided. The capacitor includes: a lower electrode including a patterned conductive layer and a plurality of nanotubes formed on the patterned conductive layer in the shape of whiskers without using a catalytic layer; a dielectric layer formed on the lower electrode; and an upper electrode formed on the dielectric layer. The method includes the steps of: forming a conductive layer for forming a lower electrode; forming a nanotube array including a plurality of nanotubes formed on the conductive layer without using a catalytic layer; forming a dielectric layer on the nanotube array; and forming an upper electrode on the dielectric layer.
Abstract:
The present invention relates to a capacitor in semiconductor device and a method of manufacturing the same, wherein, owing to formation of a lower electrode and an upper electrode into a stack structure of a poly-silicon layer and an aluminum (Al) layer and formation of an alumina (Al2O3) film as a dielectric film, the lower electrode is formed into a stack structure of the poly-silicon layer-aluminum (Al) layer, thus increasing a surface area of electrodes due to the absence of oxidation during annealing, and preventing degeneration of the device, and use of the dielectric film including a high-dielectric constant material layer enables reduction of the dielectric film's thickness. Accordingly, the present invention is capable of increasing capacitance, is capable of reducing leakage current and improving dielectric breakdown characteristics via internal formation of an MIM capacitor, and is capable of reducing production costs by performing a continuous process via use of a single piece of equipment.
Abstract:
A method for forming a capacitor in a semiconductor device is disclosed. The method includes forming a storage node electrode on a semiconductor substrate, forming a dielectric layer having a high dielectric constant on the storage node electrode, depositing a plate electrode on the dielectric layer, thereby forming by-product impurities, and removing by-product impurities remaining on the plate electrode by introducing a hydrogen (H) atom-containing gas onto the semiconductor substrate while depositing a capping layer on the plate electrode.
Abstract:
A method for forming a dual poly gate of a semiconductor device includes forming a gate insulating layer on a semiconductor substrate having a first region and a second region; forming an amorphous silicon layer, in which a portion defined by the first region is implanted with impurity ions of a first conductivity type and a portion defined by the second region is implanted with impurity ions of a second conductivity type, on the gate insulating layer; forming silicon seeds on the amorphous silicon layer; forming hemispherical grains on the surface of the amorphous silicon layer using the silicon seeds; and activating the implanted impurity ions and crystallizing the amorphous silicon layer having the hemispherical grains formed thereon by annealing to form a polysilicon layer of a first conductivity type and a polysilicon layer of a second conductivity type in the portions of the amorphous silicon layer defined by the first and second regions, respectively.
Abstract:
A method for manufacturing a capacitor of a semiconductor element including: forming a bottom electrode of the capacitor on a semiconductor substrate; performing rapid thermal nitrification (RTN) on the upper surface of the bottom electrode; performing a thermal process on the obtained structure having the bottom electrode in a furnace under a nitride atmosphere to eliminate stress generated by the RTN; forming Al2O3 and HfO2 dielectric films on the nitrified bottom electrode; and forming a plate electrode of the capacitor on the Al2O3 and HfO2 dielectric films. The thermal process is performed after the RTN performed on the surface of the bottom electrode, so that stress, generated from the RTN, is alleviated, thereby allowing the capacitor to obtain a high capacitance and lowering leakage current.
Abstract translation:一种制造半导体元件的电容器的方法,包括:在半导体衬底上形成电容器的底部电极; 在底电极的上表面进行快速热硝化(RTN); 对所获得的在氮化物气氛下的炉中具有底部电极的结构进行热处理以消除由RTN产生的应力; 在硝化的底部电极上形成Al 2 O 3 N 3和HfO 2 N 2电介质膜; 以及在Al 2 O 3和HfO 2 N 2电介质膜上形成电容器的平板电极。 在底电极表面进行RTN之后进行热处理,从而可以减轻由RTN产生的应力,从而使电容器获得高电容,降低漏电流。
Abstract:
A method for forming an isolation layer of a semiconductor device, which comprises the steps of: a) sequentially forming a pad oxide layer and a pad nitride layer on a silicon substrate; b) etching the pad nitride layer, the pad oxide layer, and the silicon substrate, thereby forming a trench; c) thermal-oxidizing the resultant substrate to form a sidewall oxide layer on a surface of the trench; d) nitrifying the sidewall oxide layer through the use of NH3 annealing; e) depositing a liner aluminum nitride layer on an entire surface of the silicon substrate inclusive of the nitrated sidewall oxide layer; f) depositing a buried oxide layer on the liner aluminum nitride layer to fill the trench; g) performing a chemical mechanical polishing process with respect to the buried oxide layer; and h) eliminating the pad nitride layer.
Abstract:
A capacitor with nanotubes and a method for fabricating the same are provided. The capacitor includes: a lower electrode including a patterned conductive layer and a plurality of nanotubes formed on the patterned conductive layer in the shape of whiskers without using a catalytic layer; a dielectric layer formed on the lower electrode; and an upper electrode formed on the dielectric layer. The method includes the steps of: forming a conductive layer for forming a lower electrode; forming a nanotube array including a plurality of nanotubes formed on the conductive layer without using a catalytic layer; forming a dielectric layer on the nanotube array; and forming an upper electrode on the dielectric layer.
Abstract:
A method for fabricating a trench dielectric layer in a semiconductor device is provided. A trench is formed in a semiconductor substrate and a liner nitride layer is then formed on an inner wall of the trench. A liner oxide layer formed on the liner nitride layer is nitrified in order to protect the liner nitride layer from being exposed. Subsequently, the trench is filled with one or more dielectric layers.
Abstract:
A capacitor with nanotubes and a method for fabricating the same are provided. The capacitor includes: a lower electrode including a patterned conductive layer and a plurality of nanotubes formed on the patterned conductive layer in the shape of whiskers without using a catalytic layer; a dielectric layer formed on the lower electrode; and an upper electrode formed on the dielectric layer. The method includes the steps of: forming a conductive layer for forming a lower electrode; forming a nanotube array including a plurality of nanotubes formed on the conductive layer without using a catalytic layer; forming a dielectric layer on the nanotube array; and forming an upper electrode on the dielectric layer.
Abstract:
A capacitor with nanotubes and a method for fabricating the same are provided. The capacitor includes: a lower electrode including a patterned conductive layer and a plurality of nanotubes formed on the patterned conductive layer in the shape of whiskers without using a catalytic layer; a dielectric layer formed on the lower electrode; and an upper electrode formed on the dielectric layer. The method includes the steps of: forming a conductive layer for forming a lower electrode; forming a nanotube array including a plurality of nanotubes formed on the conductive layer without using a catalytic layer; forming a dielectric layer on the nanotube array; and forming an upper electrode on the dielectric layer.